Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
EthylCH3CH2 (g)C[CH2]130.94119.87± 0.28kJ/mol29.0611 ±
0.0016
2025-56-1*0

Representative Geometry of CH3CH2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2 (g)

The 20 contributors listed below account only for 33.0% of the provenance of ΔfH° of CH3CH2 (g).
A total of 365 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
4.71953.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 (×1.091) eVRuscic 1989b
3.51953.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
2.51966.8 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(530 K) = -8.58 ± 0.30 kcal/molDobis 1997, Seakins 1992, Seakins 1992, Nicovich 1991, King 1970a, 3rd Law
1.91934.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
1.91965.3 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(298.15 K) = -11.15 ± 0.25 (×1.384) kcal/molDobis 1997, Seakins 1992, Seakins 1992, Nicovich 1991, King 1970a, 3rd Law
1.71964.2 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(450 K) = -57.5 ± 1.5 kJ/molFerrell 1998, 2nd Law, est unc
1.71964.1 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(450 K) = -38.3 ± 1.5 kJ/molFerrell 1998, 3rd Law, est unc
1.64254.2 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
1.31964.3 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(503 K) = -36.9 ± 1.7 kJ/molSeakins 1992, Seakins 1992, 3rd Law
1.31964.4 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(367 K) = -57.5 ± 1.7 kJ/molSeakins 1992, Seakins 1992, 2nd Law
1.21964.9 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(537 K) = -35.4 ± 1.8 kJ/molSeetula 1998, 3rd Law
1.1118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.11957.9 CH3CH3 (g) → CH3CH2 (g) H (g) ΔrH°(0 K) = 416.0 ± 2.1 kJ/molMarshall 1999
1.11958.9 CH3CH2 (g) CH4 (g) → CH3 (g) CH3CH3 (g) ΔrH°(0 K) = 16.67 ± 2.1 kJ/molMarshall 1999
1.01965.1 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(298.15 K) = -10.51 ± 0.47 kcal/molDobis 1997, Seakins 1992, Seakins 1992, Nicovich 1991, 3rd Law
0.91966.6 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(298.15 K) = -12.99 ± 0.14 (×3.513) kcal/molDobis 1997, Amphlett 1968, 2nd Law
0.91964.12 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(298.15 K) = -13.0 ± 0.5 kcal/molDobis 1995, 2nd Law
0.91964.5 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(403 K) = -9.67 ± 0.50 kcal/molNicovich 1991, 3rd Law
0.91964.10 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(537 K) = -57.0 ± 2.1 kJ/molSeetula 1998, 2nd Law
0.81953.2 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.12 ± 0.02 eVSchussler 2005, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
38.5 EthaneCH3CH3 (g)CC-68.33-83.96± 0.13kJ/mol30.0690 ±
0.0017
74-84-0*0
32.0 EthyleneCH2CH2 (g)C=C60.9152.39± 0.12kJ/mol28.0532 ±
0.0016
74-85-1*0
32.0 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.221068.01± 0.12kJ/mol28.0526 ±
0.0016
34470-02-5*0
29.9 Ethylium[CH3CH2]+ (g)[CH2+]1[CH2][H]1914.95902.87± 0.31kJ/mol29.0606 ±
0.0016
14936-94-8*0
27.7 iso-PropylCH3CHCH3 (g)C[CH]C105.0588.18± 0.56kJ/mol43.0877 ±
0.0024
2025-55-0*0
24.7 PropaneCH3CH2CH3 (g)CCC-82.74-105.03± 0.19kJ/mol44.0956 ±
0.0025
74-98-6*0
24.4 PropylCH3CH2CH2 (g)CC[CH2]118.27100.87± 0.60kJ/mol43.0877 ±
0.0024
2143-61-5*0
19.2 ChloroethaneCH3CH2Cl (g)CCCl-96.80-111.38± 0.20kJ/mol64.5138 ±
0.0019
75-00-3*0
19.2 PropeneCH3CHCH2 (g)CC=C34.9819.98± 0.21kJ/mol42.0797 ±
0.0024
115-07-1*0
18.8 Prop-2-ylium[CH3CHCH3]+ (g)C[CH+]C822.90805.64± 0.25kJ/mol43.0871 ±
0.0024
19252-53-0*0

Most Influential reactions involving CH3CH2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2063501.6 HC(O)OCH2 (g, anti) CH3CH3 (g) → HC(O)OCH3 (g, anti-eclipsed) CH3CH2 (g) ΔrH°(0 K) = 2.08 ± 0.8 kcal/molRuscic CBS-n
0.2063500.6 HC(O)OCH2 (g, syn) CH3CH3 (g) → HC(O)OCH3 (g, syn-staggered) CH3CH2 (g) ΔrH°(0 K) = 0.83 ± 0.8 kcal/molRuscic CBS-n
0.1681953.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 (×1.091) eVRuscic 1989b
0.1633501.3 HC(O)OCH2 (g, anti) CH3CH3 (g) → HC(O)OCH3 (g, anti-eclipsed) CH3CH2 (g) ΔrH°(0 K) = 1.93 ± 0.9 kcal/molRuscic G3X
0.1633500.3 HC(O)OCH2 (g, syn) CH3CH3 (g) → HC(O)OCH3 (g, syn-staggered) CH3CH2 (g) ΔrH°(0 K) = 0.79 ± 0.9 kcal/molRuscic G3X
0.1323501.2 HC(O)OCH2 (g, anti) CH3CH3 (g) → HC(O)OCH3 (g, anti-eclipsed) CH3CH2 (g) ΔrH°(0 K) = 1.64 ± 1.0 kcal/molRuscic G3
0.1323501.5 HC(O)OCH2 (g, anti) CH3CH3 (g) → HC(O)OCH3 (g, anti-eclipsed) CH3CH2 (g) ΔrH°(0 K) = 2.09 ± 1.0 kcal/molRuscic CBS-n
0.1323500.2 HC(O)OCH2 (g, syn) CH3CH3 (g) → HC(O)OCH3 (g, syn-staggered) CH3CH2 (g) ΔrH°(0 K) = 0.41 ± 1.0 kcal/molRuscic G3
0.1323500.5 HC(O)OCH2 (g, syn) CH3CH3 (g) → HC(O)OCH3 (g, syn-staggered) CH3CH2 (g) ΔrH°(0 K) = 0.99 ± 1.0 kcal/molRuscic CBS-n
0.1271953.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
0.1012049.5 [CH3C]- (g) CH3 (g) → [CH]- (g) CH3CH2 (g) ΔrH°(0 K) = 0.13 ± 0.9 kcal/molRuscic W1RO
0.0994718.5 CH2N(O)O (g) CH3CH3 (g) → CH3N(O)O (g) CH3CH2 (g) ΔrH°(0 K) = 0.59 ± 0.85 kcal/molRuscic W1RO
0.0982051.5 [CH3C]+ (g) CH3 (g) → [CH]+ (g) CH3CH2 (g) ΔrH°(0 K) = 65.21 ± 0.9 kcal/molRuscic W1RO
0.0932041.5 CH3C (g, quartet) CH3 (g) → CH (g, quartet) CH3CH2 (g) ΔrH°(0 K) = 1.21 ± 0.9 kcal/molRuscic W1RO
0.0892800.5 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -0.77 ± 0.85 kcal/molRuscic W1RO
0.0884718.4 CH2N(O)O (g) CH3CH3 (g) → CH3N(O)O (g) CH3CH2 (g) ΔrH°(0 K) = 0.41 ± 0.90 kcal/molRuscic CBS-n
0.0884718.2 CH2N(O)O (g) CH3CH3 (g) → CH3N(O)O (g) CH3CH2 (g) ΔrH°(0 K) = 0.28 ± 0.90 kcal/molRuscic G4
0.0884718.1 CH2N(O)O (g) CH3CH3 (g) → CH3N(O)O (g) CH3CH2 (g) ΔrH°(0 K) = 0.65 ± 0.90 kcal/molRuscic G3X
0.0822049.2 [CH3C]- (g) CH3 (g) → [CH]- (g) CH3CH2 (g) ΔrH°(0 K) = 0.30 ± 1.0 kcal/molRuscic G4
0.0822049.4 [CH3C]- (g) CH3 (g) → [CH]- (g) CH3CH2 (g) ΔrH°(0 K) = 0.10 ± 1.0 kcal/molRuscic CBS-n


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.