Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Iodoxyl radicalIO (g)I[O]126.97125.04± 0.82kJ/mol142.90387 ±
0.00030
14696-98-1*0

Representative Geometry of IO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of IO (g)

The 14 contributors listed below account for 92.8% of the provenance of ΔfH° of IO (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
13.01099.1 IO (g) → I (g) O (g) ΔrH°(0 K) = 54.8 ± 0.3 (×1.795) kcal/molDooley 2008
10.51099.2 IO (g) → I (g) O (g) ΔrH°(0 K) = 54.24 ± 0.6 kcal/molPeterson 2006
10.51104.3 IO (g) Cl (g) → ClO (g) I (g) ΔrH°(0 K) = -9.14 ± 0.6 kcal/molPeterson 2006
10.01106.3 IO (g) Br (g) → BrO (g) I (g) ΔrH°(0 K) = -1.49 ± 0.6 kcal/molPeterson 2006
7.81102.1 [IO]- (g) → I- (g) O (g) ΔrH°(0 K) = 38.46 ± 0.6 kcal/molPeterson 2006
7.81105.2 [IO]- (g) Cl- (g) → [ClO]- (g) I- (g) ΔrH°(0 K) = 5.74 ± 0.6 kcal/molPeterson 2006
6.91107.2 [IO]- (g) Br- (g) → [BrO]- (g) I- (g) ΔrH°(0 K) = 6.00 ± 0.6 kcal/molPeterson 2006
3.71108.2 IO (g) I (g) → I2 (g) O (g) ΔrH°(0 K) = 17.84 ± 1.0 kcal/molGrant 2010
3.71099.3 IO (g) → I (g) O (g) ΔrH°(0 K) = 53.49 ± 1.0 kcal/molGrant 2010
3.71110.3 IO (g) Cl (g) → ICl (g) O (g) ΔrH°(0 K) = 4.21 ± 1.0 kcal/molGrant 2010
3.71109.1 IO (g) Br (g) → IBr (g) O (g) ΔrH°(0 K) = 11.70 ± 1.0 kcal/molGrant 2010
3.71104.2 IO (g) Cl (g) → ClO (g) I (g) ΔrH°(0 K) = -9.31 ± 1.0 kcal/molGrant 2010
3.61100.1 [IO]- (g) → IO (g) ΔrH°(0 K) = 2.378 ± 0.006 eVGilles 1992, Gilles 1991
3.61106.2 IO (g) Br (g) → BrO (g) I (g) ΔrH°(0 K) = -1.05 ± 1.0 kcal/molGrant 2010

Top 10 species with enthalpies of formation correlated to the ΔfH° of IO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
80.2 Hypoiodite[IO]- (g)I[O-]-102.48-104.29± 0.88kJ/mol142.90442 ±
0.00030
15065-65-3*0
44.8 Iodosyl ion[IO]+ (g)I[O+]1066.11064.1± 1.9kJ/mol142.90332 ±
0.00030
81182-81-2*0
8.3 Hypoiodous acidHOI (g)OI-54.2-59.0± 3.1kJ/mol143.91181 ±
0.00031
14332-21-9*0
7.9 Hypobromite[BrO]- (g)Br[O-]-96.15-103.63± 0.54kJ/mol95.9039 ±
0.0010
14380-62-2*0
7.1 Bromine monoxideBrO (g)Br[O]131.14123.61± 0.28kJ/mol95.9034 ±
0.0010
15656-19-6*0
1.7 Hypochlorite[ClO]- (g)[Cl-]=O-118.60-118.33± 0.13kJ/mol51.45265 ±
0.00095
14380-61-1*0
1.6 Chlorine dioxideOClO (g)O=Cl=O101.3298.85± 0.27kJ/mol67.4515 ±
0.0011
10049-04-4*0
1.2 Chlorite[OClO]- (g)O=[Cl-]=O-105.62-107.80± 0.35kJ/mol67.4520 ±
0.0011
14998-27-7*0
1.2 Hypobromous acidHOBr (g)OBr-51.71-62.18± 0.59kJ/mol96.9113 ±
0.0010
13517-11-8*0
1.1 Hypobromous acid cation[HOBr]+ (g)O[Br+]974.82964.20± 0.64kJ/mol96.9108 ±
0.0010
154804-02-1*0

Most Influential reactions involving IO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9801101.1 IO (g) → [IO]+ (g) ΔrH°(0 K) = 9.735 ± 0.017 eVZhang 1996
0.8551100.1 [IO]- (g) → IO (g) ΔrH°(0 K) = 2.378 ± 0.006 eVGilles 1992, Gilles 1991
0.1301099.1 IO (g) → I (g) O (g) ΔrH°(0 K) = 54.8 ± 0.3 (×1.795) kcal/molDooley 2008
0.1111106.3 IO (g) Br (g) → BrO (g) I (g) ΔrH°(0 K) = -1.49 ± 0.6 kcal/molPeterson 2006
0.1051104.3 IO (g) Cl (g) → ClO (g) I (g) ΔrH°(0 K) = -9.14 ± 0.6 kcal/molPeterson 2006
0.1051099.2 IO (g) → I (g) O (g) ΔrH°(0 K) = 54.24 ± 0.6 kcal/molPeterson 2006
0.0661114.1 HOI (g) → H (g) IO (g) ΔrH°(0 K) = 404.4 ± 12 kJ/molSulkova 2013, est unc
0.0451100.2 [IO]- (g) → IO (g) ΔrH°(0 K) = 54.87 ± 0.6 kcal/molPeterson 2006
0.0401106.2 IO (g) Br (g) → BrO (g) I (g) ΔrH°(0 K) = -1.05 ± 1.0 kcal/molGrant 2010
0.0371109.1 IO (g) Br (g) → IBr (g) O (g) ΔrH°(0 K) = 11.70 ± 1.0 kcal/molGrant 2010
0.0371104.2 IO (g) Cl (g) → ClO (g) I (g) ΔrH°(0 K) = -9.31 ± 1.0 kcal/molGrant 2010
0.0371110.3 IO (g) Cl (g) → ICl (g) O (g) ΔrH°(0 K) = 4.21 ± 1.0 kcal/molGrant 2010
0.0371108.2 IO (g) I (g) → I2 (g) O (g) ΔrH°(0 K) = 17.84 ± 1.0 kcal/molGrant 2010
0.0371099.3 IO (g) → I (g) O (g) ΔrH°(0 K) = 53.49 ± 1.0 kcal/molGrant 2010
0.0281103.1 IO (g) ClO (g) → I (g) OClO (g) ΔrG°(298.15 K) = -2.16 ± 1.20 kcal/molBedjanian 1997a, Bedjanian 1996
0.0121101.3 IO (g) → [IO]+ (g) ΔrH°(0 K) = 9.67 ± 0.15 eVMcGrath 1996, Hassanzadeh 1997a, est unc
0.0091110.2 IO (g) Cl (g) → ICl (g) O (g) ΔrH°(0 K) = 5 ± 2 kcal/molBuss 1983
0.0071101.2 IO (g) → [IO]+ (g) ΔrH°(0 K) = 9.60 ± 0.20 eVHassanzadeh 1997a, est unc
0.0041110.1 IO (g) Cl (g) → ICl (g) O (g) ΔrH°(0 K) = 3.4 ± 3.0 kcal/molRadlein 1975
0.0041108.1 IO (g) I (g) → I2 (g) O (g) ΔrH°(0 K) = 17.4 ± 3.0 kcal/molRadlein 1975


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.