Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Propylene cation[CH3CHCH2]+ (g)CC=[CH2+]975.07962.11± 0.35kJ/mol42.0792 ±
0.0024
34504-10-4*0

Representative Geometry of [CH3CHCH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3CHCH2]+ (g)

The 20 contributors listed below account only for 78.5% of the provenance of ΔfH° of [CH3CHCH2]+ (g).
A total of 111 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
58.12561.1 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.744 ± 0.003 eVMasclet 1973
4.72564.1 CH3CHCH2 (g) H2 (g) → CH3CH2CH3 (g) ΔrH°(355.15 K) = -30.122 ± 0.060 kcal/molKistiakowsky 1935a
2.82563.1 CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -2057.72 ± 0.62 kJ/molRossini 1937
2.82561.2 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.01 (×1.354) eVKrassig 1974
1.9118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.32561.3 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.02 eVWood 1979
0.92530.1 CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2219.15 ± 0.46 kJ/molPittam 1972
0.62560.11 CH3CHCH2 (g) → 3 C (g) + 6 H (g) ΔrH°(0 K) = 811.53 ± 0.30 kcal/molKarton 2009b, Karton 2011
0.52566.12 CH3CHCH2 (g) CH3CH3 (g) → CH3CH2CH3 (g) CH2CH2 (g) ΔrH°(0 K) = 11.35 ± 0.8 kJ/molFerguson 2013, est unc
0.52631.11 CH2CCH2 (g) CH3CH3 (g) → CH3CHCH2 (g) CH2CH2 (g) ΔrH°(0 K) = -8.02 ± 0.20 kcal/molKarton 2009b, Karton 2011
0.42566.11 CH3CHCH2 (g) CH3CH3 (g) → CH3CH2CH3 (g) CH2CH2 (g) ΔrH°(0 K) = 2.72 ± 0.20 kcal/molKarton 2009b, Karton 2011
0.42626.12 CH3CCH (g) CH2CH2 (g) → CH3CHCH2 (g) HCCH (g) ΔrH°(0 K) = 10.57 ± 0.8 kJ/molFerguson 2013, est unc
0.42877.5 CH3CH2CH2CH2CH3 (g) + 2 CH3CH3 (g) → 3 CH3CH2CH3 (g) ΔrH°(0 K) = 0.52 ± 0.35 kcal/molKarton 2009b
0.42563.2 CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -491.83 ± 0.39 kcal/molWiberg 1968
0.41852.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.42626.11 CH3CCH (g) CH2CH2 (g) → CH3CHCH2 (g) HCCH (g) ΔrH°(0 K) = 2.30 ± 0.20 kcal/molKarton 2011
0.32563.3 CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -491.9 ± 0.4 kcal/molWiberg 1962
0.31729.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.31934.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
0.31991.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3CHCH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
60.2 PropeneCH3CHCH2 (g)CC=C34.9819.98± 0.21kJ/mol42.0797 ±
0.0024
115-07-1*0
39.3 PropaneCH3CH2CH3 (g)CCC-82.74-105.03± 0.19kJ/mol44.0956 ±
0.0025
74-98-6*0
28.5 Prop-2-ylium[CH3CHCH3]+ (g)C[CH+]C822.90805.64± 0.25kJ/mol43.0871 ±
0.0024
19252-53-0*0
26.4 EthaneCH3CH3 (g)CC-68.33-83.96± 0.13kJ/mol30.0690 ±
0.0017
74-84-0*0
25.7 EthyleneCH2CH2 (g)C=C60.9152.39± 0.12kJ/mol28.0532 ±
0.0016
74-85-1*0
25.7 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.221068.01± 0.12kJ/mol28.0526 ±
0.0016
34470-02-5*0
25.2 PropyneCH3CCH (g)CC#C192.82185.76± 0.25kJ/mol40.0639 ±
0.0024
74-99-7*0
25.0 AlleneCH2CCH2 (g)C=C=C197.37189.89± 0.26kJ/mol40.0639 ±
0.0024
463-49-0*0
21.9 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.65-125.96± 0.26kJ/mol58.1222 ±
0.0033
106-97-8*0
21.3 WaterH2O (cr,l)O-286.308-285.836± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving [CH3CHCH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9172561.1 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.744 ± 0.003 eVMasclet 1973
0.1062572.4 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -10.86 ± 1.3 kcal/molRuscic G4
0.0912572.3 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -11.13 ± 1.4 kcal/molRuscic G3X
0.0852572.7 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -9.85 ± 1.3 (×1.114) kcal/molRuscic CBS-n
0.0702572.6 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -10.50 ± 1.6 kcal/molRuscic CBS-n
0.0452561.2 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.01 (×1.354) eVKrassig 1974
0.0202561.3 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.02 eVWood 1979
0.0032561.5 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.72 ± 0.05 eVKatrib 1973a, est unc
0.0032561.4 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.05 eVTraeger 1984, est unc
0.0012561.9 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.747 ± 0.073 eVRuscic G4
0.0012561.12 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.794 ± 0.075 eVRuscic CBS-n
0.0012561.8 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.764 ± 0.093 eVRuscic G3X
0.0002561.11 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.783 ± 0.099 eVRuscic CBS-n


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.