Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]
This version of ATcT results was partially described in Ruscic et al. [4],
and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Methanol | CH3OH (g) | | -189.83 | -200.71 | ± 0.16 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*0 |
|
Representative Geometry of CH3OH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3OH (g)The 20 contributors listed below account only for 74.7% of the provenance of ΔfH° of CH3OH (g). A total of 168 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 49.3 | 2082.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 10.1 | 2129.1 | [CH2OH]+ (g) → H2CO (g) + H+ (g)  | ΔrH°(0 K) = 704.98 ± 0.39 kJ/mol | Czako 2009 | 2.3 | 117.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 1.9 | 2088.1 | CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(303.15 K) = -725.36 ± 0.13 (×8.175) kJ/mol | Chao 1965, mw conversion | 1.6 | 2127.1 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.6454 ± 0.0017 eV | Borkar 2011 | 1.5 | 2076.11 | CH3OH (g) → 4 H (g) + C (g) + O (g)  | ΔrH°(0 K) = 480.94 ± 0.30 kcal/mol | Karton 2011 | 1.1 | 2128.1 | CH2OH (g) → H2CO (g) + H (g)  | ΔrH°(0 K) = 10160 ± 70 cm-1 | Ryazanov 2012 | 0.8 | 2128.10 | CH2OH (g) → H2CO (g) + H (g)  | ΔrH°(0 K) = 121.88 ± 0.46 (×2.044) kJ/mol | Marenich 2003b, note unc2 | 0.6 | 1642.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 0.5 | 2076.12 | CH3OH (g) → 4 H (g) + C (g) + O (g)  | ΔrH°(0 K) = 481.16 ± 0.50 kcal/mol | Matus 2007 | 0.5 | 2127.2 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.649 ± 0.003 eV | Ruscic 1993 | 0.4 | 2088.6 | CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(293.15 K) = -174.03 ± 0.5 kcal/mol | Roth 1932a, Roth 1931, Rossini 1932a, est unc | 0.4 | 2088.7 | CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(293.15 K) = -174.19 ± 0.5 kcal/mol | Farbenfabrik 1931, Rossini 1932a, est unc | 0.4 | 2113.1 | CH3OH (g) + F- (g) → [CH3O]- (g) + HF (g)  | ΔrH°(0 K) = 0.462 ± 0.003 (×3.292) eV | DeTuri 1999, Ervin 2002 | 0.4 | 2115.1 | CH3O (g) → CH3 (g) + O (g)  | ΔrH°(0 K) = 87.8 ± 0.3 kcal/mol | Osborn 1995, Osborn 1997 | 0.4 | 2204.11 | [HCO]+ (g) → H+ (g) + CO (g)  | ΔrH°(0 K) = 586.51 ± 0.2 kJ/mol | Czako 2008 | 0.4 | 2903.6 | CH3OCH3 (g) + H2O (g) → 2 CH3OH (g)  | ΔrH°(0 K) = 6.11 ± 1.0 kcal/mol | Ruscic CBS-n | 0.4 | 2903.7 | CH3OCH3 (g) + H2O (g) → 2 CH3OH (g)  | ΔrH°(0 K) = 5.80 ± 1.0 kcal/mol | Parthiban 2001, Ruscic W1RO | 0.4 | 2076.10 | CH3OH (g) → 4 H (g) + C (g) + O (g)  | ΔrH°(0 K) = 481.02 ± 0.56 kcal/mol | Karton 2011 | 0.4 | 2124.9 | [CH2OH]+ (g) → C (g) + 3 H (g) + O (g)  | ΔrH°(0 K) = 212.63 ± 0.50 kcal/mol | Matus 2007 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.3 | Methanol | CH3OH (l) | | -235.07 | -238.41 | ± 0.17 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*500 | 73.7 | Hydroxymethylium | [CH2OH]+ (g) | | 717.85 | 709.91 | ± 0.19 | kJ/mol | 31.03337 ± 0.00088 | 18682-95-6*0 | 48.0 | Methanol cation | [CH3OH]+ (g) | | 857.08 | 846.75 | ± 0.33 | kJ/mol | 32.04131 ± 0.00090 | 12538-91-9*0 | 32.0 | Hydroxymethyl | CH2OH (g) | | -10.25 | -16.56 | ± 0.33 | kJ/mol | 31.03392 ± 0.00088 | 2597-43-5*0 | 31.4 | Methyl nitrite | CH3ONO (g, cis) | | -55.46 | -67.24 | ± 0.46 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*2 | 31.4 | Methyl nitrite | CH3ONO (g, cis-trans equilib) | | -55.46 | -66.13 | ± 0.46 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*0 | 27.5 | Methoxide | [CH3O]- (g) | | -122.54 | -130.27 | ± 0.35 | kJ/mol | 31.03447 ± 0.00088 | 3315-60-4*0 | 27.2 | Methoxy | CH3O (g) | | 28.90 | 21.53 | ± 0.34 | kJ/mol | 31.03392 ± 0.00088 | 2143-68-2*0 | 25.2 | Methyl nitrite | CH3ONO (cr,l) | | | -88.69 | ± 0.56 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*500 | 23.4 | Methanol dimer | (CH3OH)2 (g) | | -398.1 | -418.7 | ± 1.4 | kJ/mol | 64.0837 ± 0.0018 | 42845-44-3*0 |
|
Most Influential reactions involving CH3OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.815 | 4069.2 | CH3OH (g) + 2 ONO (g) → HNO3 (g) + CH3ONO (g, cis-trans equilib)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.619 | 2127.1 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.6454 ± 0.0017 eV | Borkar 2011 | 0.556 | 2082.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 0.345 | 2077.1 | CH3OH (g) → [CH3OH]+ (g)  | ΔrH°(0 K) = 10.853 ± 0.005 eV | Karlsson 1977 | 0.345 | 2077.2 | CH3OH (g) → [CH3OH]+ (g)  | ΔrH°(0 K) = 10.846 ± 0.005 eV | MacNeil 1977, note unc3 | 0.341 | 2687.1 | CH3OH (g) + [CH3CHOH]+ (g) → CH3CH2OH (g) + [CH2OH]+ (g)  | ΔrH°(0 K) = 0.848 ± 0.006 eV | Ruscic 1993, Ruscic 1994c | 0.249 | 2086.6 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/mol | Svoboda 1973 | 0.249 | 2086.5 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/mol | Fiock 1931, Rossini 1932a | 0.230 | 2092.1 | [CH3OH2]+ (g) + CH3CHCH2 (g) → CH3OH (g) + [CH3CHCH3]+ (g)  | ΔrG°(598 K) = 1.6 ± 0.6 kcal/mol | Szulejko 1993, 3rd Law | 0.198 | 2127.2 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.649 ± 0.003 eV | Ruscic 1993 | 0.183 | 2086.4 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.66 ± 0.07 kJ/mol | Polak 1971, note unc | 0.179 | 2659.7 | CH3CH2OH (g) + [CH3OH]+ (g) → [CH3CH2OH]+ (g) + CH3OH (g)  | ΔrH°(0 K) = -0.479 ± 0.036 eV | Ruscic W1RO, Bodi 2012 | 0.140 | 2095.5 | (CH3OH)2 (g) + 2 H2O (g) → (H2O)2 (g) + 2 CH3OH (g)  | ΔrH°(0 K) = 1.58 ± 0.85 kcal/mol | Ruscic W1RO | 0.131 | 2079.4 | [CH3OH]- (g) → CH3OH (g)  | ΔrH°(0 K) = -2.504 ± 0.073 eV | Ruscic G4 | 0.128 | 2086.12 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 9.00 ± 0.02 kcal/mol | Green 1960, Rossini 1934a | 0.127 | 2091.5 | [CH3OH2]+ (g) + H2O (g) → CH3OH (g) + [H3O]+ (g)  | ΔrH°(0 K) = 15.55 ± 0.8 kcal/mol | Ruscic W1RO | 0.125 | 2113.1 | CH3OH (g) + F- (g) → [CH3O]- (g) + HF (g)  | ΔrH°(0 K) = 0.462 ± 0.003 (×3.292) eV | DeTuri 1999, Ervin 2002 | 0.125 | 2095.2 | (CH3OH)2 (g) + 2 H2O (g) → (H2O)2 (g) + 2 CH3OH (g)  | ΔrH°(0 K) = 1.24 ± 0.90 kcal/mol | Ruscic G4 | 0.125 | 2095.4 | (CH3OH)2 (g) + 2 H2O (g) → (H2O)2 (g) + 2 CH3OH (g)  | ΔrH°(0 K) = 1.56 ± 0.90 kcal/mol | Ruscic CBS-n | 0.125 | 2095.1 | (CH3OH)2 (g) + 2 H2O (g) → (H2O)2 (g) + 2 CH3OH (g)  | ΔrH°(0 K) = 1.22 ± 0.90 kcal/mol | Ruscic G3X |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017)
[DOI: 10.1021/acs.jpca.7b05945]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|