Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]
This version of ATcT results was partially described in Ruscic et al. [4],
and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydroxyformyl | HOCO (g, cis) | | -174.04 | -177.07 | ± 0.51 | kJ/mol | 45.0174 ± 0.0010 | 2564-86-5*2 |
|
Representative Geometry of HOCO (g, cis) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HOCO (g, cis)The 20 contributors listed below account only for 63.1% of the provenance of ΔfH° of HOCO (g, cis). A total of 109 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 17.3 | 3030.1 | HOCO (g, cis) → 1/2 H2 (g) + O2 (g) + C (g)  | ΔrH°(0 K) = 886.28 ± 1.2 kJ/mol | Nagy 2010 | 6.6 | 3028.8 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 6.35 ± 0.8 kJ/mol | Nguyen 2012, est unc | 5.9 | 3029.1 | HOCO (g, trans) → 1/2 H2 (g) + O2 (g) + C (g)  | ΔrH°(0 K) = 892.97 ± 1.2 kJ/mol | Nagy 2010 | 4.8 | 3057.7 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 11.6 ± 0.4 kcal/mol | Feller 2003c | 4.2 | 3028.7 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 6.69 ± 1.0 kJ/mol | Nagy 2010, est unc | 3.1 | 3021.1 | [HOCO]- (g, cis) → HOCO (g, cis)  | ΔrH°(0 K) = 1.51 ± 0.01 eV | Johnson 2011 | 3.1 | 3021.2 | [HOCO]- (g, cis) → HOCO (g, cis)  | ΔrH°(0 K) = 1.501 ± 0.010 eV | Johnson 2011, est unc | 2.9 | 3033.1 | [HOCO]- (g, cis) → OH (g) + CO (g)  | ΔrH°(0 K) = 2.50 ± 0.02 eV | Johnson 2010, Johnson 2011 | 2.9 | 3033.2 | [HOCO]- (g, cis) → OH (g) + CO (g)  | ΔrH°(0 K) = 2.51 ± 0.02 eV | Johnson 2011, est unc | 2.0 | 3034.1 | [HOCO]- (g, trans) → OH (g) + CO (g)  | ΔrH°(0 K) = 2.45 ± 0.02 eV | Johnson 2011, est unc | 1.9 | 3016.10 | HOCO (g, trans) → H (g) + C (g) + 2 O (g)  | ΔrH°(0 K) = 383.0 ± 0.5 kcal/mol | Dixon 2003, est unc | 1.4 | 3019.8 | HOCO (g, cis) → [HOCO]+ (g)  | ΔrH°(0 K) = 8.029 ± 0.040 eV | Ruscic W1RO | 1.3 | 3016.9 | HOCO (g, trans) → H (g) + C (g) + 2 O (g)  | ΔrH°(0 K) = 383.5 ± 0.5 (×1.215) kcal/mol | Feller 2003c | 1.0 | 3060.1 | HC(O)OH (g) + Cl- (g) → [HC(O)O]- (g) + HCl (g)  | ΔrG°(600 K) = 8.4 ± 0.2 (×1.414) kcal/mol | Cumming 1978 | 0.7 | 3028.9 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 553.6 ± 200 cm-1 | Wang 2013, est unc | 0.6 | 3039.9 | HOCO (g, cis) → H (g) + CO2 (g)  | ΔrH°(0 K) = -0.922 ± 1.5 kcal/mol | Yu 2001a, est unc | 0.6 | 3039.8 | HOCO (g, cis) → H (g) + CO2 (g)  | ΔrH°(0 K) = -0.60 ± 1.50 kcal/mol | Ruscic W1RO | 0.6 | 3038.9 | HOCO (g, cis) → OH (g) + CO (g)  | ΔrH°(0 K) = 23.667 ± 1.5 kcal/mol | Yu 2001a, est unc | 0.6 | 3038.8 | HOCO (g, cis) → OH (g) + CO (g)  | ΔrH°(0 K) = 23.49 ± 1.50 kcal/mol | Ruscic W1RO | 0.6 | 3017.7 | HOCO (g, cis) → H (g) + C (g) + 2 O (g)  | ΔrH°(0 K) = 381.63 ± 1.50 kcal/mol | Ruscic CBS-n |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HOCO (g, cis) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 62.2 | Hydroxyformyl | HOCO (g, trans) | | -180.96 | -183.93 | ± 0.48 | kJ/mol | 45.0174 ± 0.0010 | 2564-86-5*1 | 62.2 | Hydroxyformyl | HOCO (g, trans-cis equilib) | | -180.96 | -183.54 | ± 0.48 | kJ/mol | 45.0174 ± 0.0010 | 2564-86-5*0 | 57.4 | Hydroxyformyl anion | [HOCO]- (g, cis) | | -319.36 | -322.13 | ± 0.58 | kJ/mol | 45.0180 ± 0.0010 | 78944-70-4*2 | 57.4 | Hydroxyformyl anion | [HOCO]- (g, trans-cis equilib) | | -319.36 | -321.43 | ± 0.58 | kJ/mol | 45.0180 ± 0.0010 | 78944-70-4*0 | 47.2 | Hydroxyformyl anion | [HOCO]- (g, trans) | | -313.53 | -315.48 | ± 0.59 | kJ/mol | 45.0180 ± 0.0010 | 78944-70-4*1 | 24.6 | Formyloxidanyl | HC(O)O (g) | | -124.76 | -126.13 | ± 0.55 | kJ/mol | 45.0174 ± 0.0010 | 16499-21-1*0 | 24.6 | Formyloxidanyl | HC(O)O (g, 2A1) | | -124.76 | -126.43 | ± 0.55 | kJ/mol | 45.0174 ± 0.0010 | 16499-21-1*1 | 24.3 | Formate | [HC(O)O]- (g) | | -462.11 | -465.75 | ± 0.55 | kJ/mol | 45.0180 ± 0.0010 | 71-47-6*0 | 24.2 | Formyloxidanyl | HC(O)O (g, 2B2) | | -120.94 | -124.29 | ± 0.55 | kJ/mol | 45.0174 ± 0.0010 | 16499-21-1*2 | 15.5 | Methoxycarbonyl | C(O)OCH3 (g, anti-staggered) | | -149.8 | -157.7 | ± 1.9 | kJ/mol | 59.0440 ± 0.0017 | 16481-04-2*1 |
|
Most Influential reactions involving HOCO (g, cis)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.284 | 3028.8 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 6.35 ± 0.8 kJ/mol | Nguyen 2012, est unc | 0.270 | 3021.1 | [HOCO]- (g, cis) → HOCO (g, cis)  | ΔrH°(0 K) = 1.51 ± 0.01 eV | Johnson 2011 | 0.270 | 3021.2 | [HOCO]- (g, cis) → HOCO (g, cis)  | ΔrH°(0 K) = 1.501 ± 0.010 eV | Johnson 2011, est unc | 0.181 | 3028.7 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 6.69 ± 1.0 kJ/mol | Nagy 2010, est unc | 0.175 | 3030.1 | HOCO (g, cis) → 1/2 H2 (g) + O2 (g) + C (g)  | ΔrH°(0 K) = 886.28 ± 1.2 kJ/mol | Nagy 2010 | 0.147 | 3057.7 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 11.6 ± 0.4 kcal/mol | Feller 2003c | 0.031 | 3028.9 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 553.6 ± 200 cm-1 | Wang 2013, est unc | 0.026 | 3019.8 | HOCO (g, cis) → [HOCO]+ (g)  | ΔrH°(0 K) = 8.029 ± 0.040 eV | Ruscic W1RO | 0.016 | 3057.5 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 11.92 ± 1.2 kcal/mol | Ruscic W1RO | 0.014 | 3027.8 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 548 ± 300 cm-1 | Ruscic W1RO | 0.014 | 3057.2 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 11.70 ± 1.3 kcal/mol | Ruscic G4 | 0.013 | 3027.7 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 749 ± 310 cm-1 | Ruscic CBS-n | 0.013 | 3027.4 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 579 ± 310 cm-1 | Ruscic G4 | 0.012 | 3027.3 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 599 ± 315 cm-1 | Ruscic G3X | 0.012 | 3057.3 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 10.82 ± 1.4 kcal/mol | Ruscic G3X | 0.012 | 3057.10 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 10.67 ± 1.4 kcal/mol | Song 2006 | 0.010 | 3021.10 | [HOCO]- (g, cis) → HOCO (g, cis)  | ΔrH°(0 K) = 1.504 ± 0.050 eV | Ruscic W1RO | 0.010 | 3057.1 | HOCO (g, cis) → HC(O)O (g, 2A1)  | ΔrH°(0 K) = 11.11 ± 1.5 kcal/mol | Ruscic G3 | 0.010 | 3028.3 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 1.674 ± 1.0 kcal/mol | Yu 2001a, est unc | 0.010 | 3027.6 | HOCO (g, trans) → HOCO (g, cis)  | ΔrH°(0 K) = 706 ± 350 cm-1 | Ruscic CBS-n, Duncan 2000 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017)
[DOI: 10.1021/acs.jpca.7b05945]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|