Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Phenyl

Formula: C6H5 (g)
CAS RN: 2396-01-2
ATcT ID: 2396-01-2*0
SMILES: c1cccc[c]1
SMILES: c1cc[c]cc1
SMILES: C1=CC=CC=[C]1
InChI: InChI=1S/C6H5/c1-2-4-6-5-3-1/h1-5H
InChIKey: CIUQDSCDWFSTQR-UHFFFAOYSA-N
Hills Formula: C6H5

2D Image:

c1cccc[c]1
Aliases: Phenyl; Phenyl radical; C6H5
Relative Molecular Mass: 77.1039 ± 0.0048

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
352.64339.28± 0.60kJ/mol

3D Image of C6H5 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5 (g)

The 20 contributors listed below account only for 42.2% of the provenance of ΔfH° of C6H5 (g).
A total of 180 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
7.36956.9 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrG°(710 K) = -26.4 ± 2 kJ/molHeckmann 1996, Zhang 1989, 3rd Law, est unc
3.86945.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 (×4.555) eVGunion 1992
3.79435.2 C6H5C6H5 (g) + 2 CH3 (g) → 2 C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = 31.81 ± 1.3 kcal/molRuscic G4
2.56956.10 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrH°(710 K) = -30.2 ± 3 (×1.139) kJ/molHeckmann 1996, Zhang 1989, 2nd Law, est unc
2.59434.2 C6H5C6H5 (g) → 2 C6H5 (g) ΔrH°(0 K) = 118.54 ± 1.60 kcal/molRuscic G4
2.46952.13 C6H6 (g) → C6H5 (g) H (g) ΔrH°(0 K) = 111.02 ± 0.60 (×1.384) kcal/molKarton 2009a
2.07456.1 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(391 K) = 39.48 ± 0.5 kcal/molPark 1997, Yu 1994a, 3rd Law
1.96943.11 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4995.9 ± 4 kJ/molLau 2006
1.96949.5 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrG°(296 K) = 27.54 ± 3.87 kJ/molSokolov 1998, Alecu 2007, 3rd Law
1.86956.6 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrH°(0 K) = -34.5 ± 4 kJ/molHemelsoet 2006
1.57103.5 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.78 ± 0.9 kcal/molRuscic W1RO
1.46943.10 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.15 ± 0.60 (×1.874) kcal/molKarton 2009a
1.27103.2 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.30 ± 1.0 kcal/molRuscic G4
1.27103.4 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.37 ± 1.0 kcal/molRuscic CBS-n
1.26944.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006
1.16949.3 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrG°(298.15 K) = 26.93 ± 5.01 kJ/molAlecu 2007, Sokolov 1998, 3rd Law
1.16945.10 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.113 ± 0.050 eVRuscic W1RO
1.07103.1 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -5.63 ± 1.1 kcal/molRuscic G3X
0.96943.9 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.02 ± 1.39 kcal/molKarton 2009a
0.96944.12 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.267 ± 0.040 eVRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
35.5 3-MethylphenylC6H4CH3 (g, meta)c1[c]cc(cc1)C324.5306.4± 1.2kJ/mol91.1305 ±
0.0056
3474-41-7*0
35.4 4-MethylphenylC6H4CH3 (g, para)[c]1ccc(cc1)C327.2309.3± 1.2kJ/mol91.1305 ±
0.0056
2396-02-3*0
35.3 2-MethylphenylC6H4CH3 (g, ortho)c1c[c]c(cc1)C324.5306.5± 1.2kJ/mol91.1305 ±
0.0056
22904-44-5*0
29.1 p-ChlorophenylC6H4Cl (g)c1(Cl)cc[c]cc1324.7313.9± 1.6kJ/mol111.5487 ±
0.0049
2396-00-1*0
29.1 o-ChlorophenylC6H4Cl (g)c1(Cl)[c]cccc1328.9318.2± 1.6kJ/mol111.5487 ±
0.0049
3474-42-8*0
29.1 m-ChlorophenylC6H4Cl (g)c1(Cl)c[c]ccc1321.8311.0± 1.6kJ/mol111.5487 ±
0.0049
3474-40-6*0
26.1 Phenylium[C6H5]+ (g)c1cccc[c+]11149.321136.54± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*0
26.1 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11149.321136.54± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*2
25.9 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O217.0200.0± 1.2kJ/mol107.1100 ±
0.0048
586-96-9*0
25.7 BenzeneC6H6 (g)c1ccccc1100.7083.19± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0

Most Influential reactions involving C6H5 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2947456.1 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(391 K) = 39.48 ± 0.5 kcal/molPark 1997, Yu 1994a, 3rd Law
0.1337403.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.27 ± 0.9 kcal/molRuscic W1RO
0.1337404.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.85 ± 0.9 kcal/molRuscic W1RO
0.1327405.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.86 ± 0.9 kcal/molRuscic W1RO
0.1087403.2 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.49 ± 1.0 kcal/molRuscic G4
0.1077404.2 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.28 ± 1.0 kcal/molRuscic G4
0.1077405.2 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -2.22 ± 1.0 kcal/molRuscic G4
0.1068619.2 C6H5OO (g) CH3 (g) → C6H5 (g) CH3OO (g) ΔrH°(0 K) = 16.66 ± 1.0 kcal/molRuscic G4
0.0939402.2 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CHCCHCH) (g) ΔrH°(0 K) = -2.14 ± 0.90 kcal/molRuscic G4
0.0939402.1 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CHCCHCH) (g) ΔrH°(0 K) = -1.32 ± 0.90 kcal/molRuscic G3X
0.0907079.5 C6H5CH3 (g) C6H5 (g) → C6H4CH3 (g, meta) C6H6 (g) ΔrH°(0 K) = -0.15 ± 0.85 kcal/molRuscic W1RO
0.0907085.5 C6H5CH3 (g) C6H5 (g) → C6H4CH3 (g, para) C6H6 (g) ΔrH°(0 K) = 0.35 ± 0.85 kcal/molRuscic W1RO
0.0897403.1 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.89 ± 1.1 kcal/molRuscic G3X
0.0897404.1 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.55 ± 1.1 kcal/molRuscic G3X
0.0887405.1 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -2.59 ± 1.1 kcal/molRuscic G3X
0.0887082.5 C6H5CH3 (g) C6H5 (g) → C6H4CH3 (g, ortho) C6H6 (g) ΔrH°(0 K) = -0.16 ± 0.85 kcal/molRuscic W1RO
0.0888619.1 C6H5OO (g) CH3 (g) → C6H5 (g) CH3OO (g) ΔrH°(0 K) = 17.83 ± 1.1 kcal/molRuscic G3X
0.0859403.2 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CCHCHCH) (g) ΔrH°(0 K) = -1.82 ± 0.90 kcal/molRuscic G4
0.0859403.1 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CCHCHCH) (g) ΔrH°(0 K) = -1.01 ± 0.90 kcal/molRuscic G3X
0.0859402.4 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CHCCHCH) (g) ΔrH°(0 K) = -2.43 ± 0.90 (×1.044) kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.