Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Formyloxidanyl

Formula: HC(O)O (g, 2B2)
CAS RN: 16499-21-1
ATcT ID: 16499-21-1*2
SMILES: C(=O)[O]
InChI: InChI=1S/CHO2/c2-1-3/h1H
InChIKey: JRCLCXAVSVCEQC-UHFFFAOYSA-N
Hills Formula: C1H1O2

2D Image:

C(=O)[O]
Aliases: HC(O)O; Formyloxidanyl; Formyloxy; Oxomethoxy; Formyloxyl; Formate free radical; HCO2
Relative Molecular Mass: 45.0174 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-121.95-125.30± 0.55kJ/mol

3D Image of HC(O)O (g, 2B2)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HC(O)O (g, 2B2)

The 20 contributors listed below account only for 47.9% of the provenance of ΔfH° of HC(O)O (g, 2B2).
A total of 106 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
6.74934.7 HOCO (g, cis) → HC(O)O (g, 2A1) ΔrH°(0 K) = 11.6 ± 0.4 kcal/molFeller 2003c
5.07246.1 [C6H5O]- (g) HC(O)OH (g) → C6H5OH (g) [HC(O)O]- (g) ΔrG°(500 K) = -4.9 ± 0.4 kcal/molCumming 1978
4.94937.1 HC(O)OH (g) Cl- (g) → [HC(O)O]- (g) HCl (g) ΔrG°(600 K) = 8.4 ± 0.2 (×2.709) kcal/molCumming 1978
3.64933.8 HOCO (g, trans) → HC(O)O (g, 2A1) ΔrH°(0 K) = 13.8 ± 0.5 (×1.139) kcal/molDixon 2003, est unc
3.34947.4 HC(O)O (g, 2A1) → H (g) CO2 (g) ΔrH°(0 K) = -12.6 ± 0.7 kcal/molFeller 2003c, note unc3
3.14922.9 HC(O)O (g, 2A1) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 369.0 ± 0.4 (×1.795) kcal/molFeller 2003c
2.54922.7 HC(O)O (g, 2A1) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 369.2 ± 0.8 kcal/molDixon 2003, est unc
2.54929.9 [HC(O)O]- (g) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 450.2 ± 0.8 kcal/molDixon 2003, est unc
2.24944.5 HC(O)OH (g) [OH]- (g) → [HC(O)O]- (g) H2O (g) ΔrH°(0 K) = -46.33 ± 0.8 kcal/molRuscic W1RO
1.94941.5 HC(O)OH (g, syn) → HC(O)O (g, 2A1) H (g) ΔrH°(0 K) = 111.1 ± 0.6 (×1.445) kcal/molFeller 2003c
1.74943.5 HC(O)OH (g) → [HC(O)O]- (g) H+ (g) ΔrH°(0 K) = 343.23 ± 0.90 kcal/molRuscic W1RO
1.45328.5 [CH3C(O)O]- (g) HC(O)OH (g, syn) → CH3C(O)OH (g, syn) [HC(O)O]- (g) ΔrH°(0 K) = -3.73 ± 0.8 kcal/molRuscic W1RO
1.44944.4 HC(O)OH (g) [OH]- (g) → [HC(O)O]- (g) H2O (g) ΔrH°(0 K) = -46.27 ± 1.0 kcal/molRuscic CBS-n
1.44944.2 HC(O)OH (g) [OH]- (g) → [HC(O)O]- (g) H2O (g) ΔrH°(0 K) = -45.77 ± 1.0 kcal/molRuscic G4
1.27246.6 [C6H5O]- (g) HC(O)OH (g) → C6H5OH (g) [HC(O)O]- (g) ΔrH°(0 K) = -5.30 ± 0.8 kcal/molRuscic W1RO
0.95328.2 [CH3C(O)O]- (g) HC(O)OH (g, syn) → CH3C(O)OH (g, syn) [HC(O)O]- (g) ΔrH°(0 K) = -3.76 ± 1.0 kcal/molRuscic G4
0.95328.4 [CH3C(O)O]- (g) HC(O)OH (g, syn) → CH3C(O)OH (g, syn) [HC(O)O]- (g) ΔrH°(0 K) = -3.54 ± 1.0 kcal/molRuscic CBS-n
0.94948.1 HC(O)O (g, 2B2) → H (g) CO2 (g) ΔrH°(0 K) = -14.5 ± 0.7 (×1.915) kcal/molFeller 2003c, note unc3
0.84923.8 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 367.4 ± 0.8 (×1.756) kcal/molDixon 2003, est unc
0.84933.5 HOCO (g, trans) → HC(O)O (g, 2A1) ΔrH°(0 K) = 13.49 ± 1.2 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of HC(O)O (g, 2B2)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.1 FormyloxidanylHC(O)O (g, 2A1)C(=O)[O]-125.76-127.42± 0.55kJ/mol45.0174 ±
0.0010
16499-21-1*1
99.1 FormyloxidanylHC(O)O (g)C(=O)[O]-125.76-127.12± 0.55kJ/mol45.0174 ±
0.0010
16499-21-1*0
99.0 Formate[HC(O)O]- (g)C(=O)[O-]-463.10-466.74± 0.55kJ/mol45.0180 ±
0.0010
71-47-6*0
23.7 Formyloxoniumylidene[HC(O)O]+ (g)C(=O)[O+]1017.41014.0± 1.4kJ/mol45.0169 ±
0.0010
54375-27-8*0
21.4 HydroxyformylHOCO (g, cis)O[C]=O-174.33-177.35± 0.48kJ/mol45.0174 ±
0.0010
2564-86-5*2
20.8 HydroxyformylHOCO (g)O[C]=O-181.14-183.68± 0.40kJ/mol45.0174 ±
0.0010
2564-86-5*0
20.8 HydroxyformylHOCO (g, trans)O[C]=O-181.14-184.10± 0.40kJ/mol45.0174 ±
0.0010
2564-86-5*1
17.3 Formic acidHC(O)OH (g)C(=O)O-370.98-378.27± 0.20kJ/mol46.0254 ±
0.0010
64-18-6*0
17.3 Formic acidHC(O)OH (g, syn)C(=O)O-370.98-378.30± 0.20kJ/mol46.0254 ±
0.0010
64-18-6*1
15.9 Hydroxyformyl anion[HOCO]- (g, trans)[C-](=O)O-313.63-315.43± 0.56kJ/mol45.0180 ±
0.0010
78944-70-4*1

Most Influential reactions involving HC(O)O (g, 2B2)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6304927.1 [HC(O)O]- (g) → HC(O)O (g, 2B2) ΔrH°(0 K) = 28516 ± 8 cm-1Garand 2010
0.5324932.1 HC(O)O (g, 2A1) → HC(O)O (g, 2B2) ΔrH°(0 K) = 318 ± 8 cm-1Garand 2010
0.1184925.6 HC(O)O (g, 2B2) → [HC(O)O]+ (g) ΔrH°(0 K) = 11.787 ± 0.040 eVRuscic W1RO
0.0854932.11 HC(O)O (g, 2A1) → HC(O)O (g, 2B2) ΔrH°(0 K) = 310.2 ± 20 cm-1Garand 2010, est unc
0.0544932.13 HC(O)O (g, 2A1) → HC(O)O (g, 2B2) ΔrH°(0 K) = 327 ± 25 cm-1Klein 2011, est unc
0.0544932.12 HC(O)O (g, 2A1) → HC(O)O (g, 2B2) ΔrH°(0 K) = 325.8 ± 25 cm-1Zou 2015, est unc
0.0354925.4 HC(O)O (g, 2B2) → [HC(O)O]+ (g) ΔrH°(0 K) = 11.785 ± 0.073 eVRuscic G4
0.0214925.3 HC(O)O (g, 2B2) → [HC(O)O]+ (g) ΔrH°(0 K) = 11.805 ± 0.093 eVRuscic G3X
0.0194925.5 HC(O)O (g, 2B2) → [HC(O)O]+ (g) ΔrH°(0 K) = 11.825 ± 0.099 eVRuscic CBS-n
0.0094948.1 HC(O)O (g, 2B2) → H (g) CO2 (g) ΔrH°(0 K) = -14.5 ± 0.7 (×1.915) kcal/molFeller 2003c, note unc3
0.0084923.8 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 367.4 ± 0.8 (×1.756) kcal/molDixon 2003, est unc
0.0074942.4 HC(O)OH (g, syn) → HC(O)O (g, 2B2) H (g) ΔrH°(0 K) = 112.53 ± 1.50 kcal/molRuscic W1RO
0.0074923.6 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 368.00 ± 1.50 kcal/molRuscic W1RO
0.0064942.3 HC(O)OH (g, syn) → HC(O)O (g, 2B2) H (g) ΔrH°(0 K) = 111.03 ± 1.60 kcal/molRuscic G4
0.0064923.7 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 368.02 ± 1.6 kcal/molHaworth 2000, est unc
0.0064923.4 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 369.00 ± 1.60 kcal/molRuscic G4
0.0054923.9 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 367.1 ± 0.4 (×4.269) kcal/molFeller 2003c
0.0054942.2 HC(O)OH (g, syn) → HC(O)O (g, 2B2) H (g) ΔrH°(0 K) = 111.02 ± 1.72 kcal/molRuscic G3X
0.0054923.3 HC(O)O (g, 2B2) → H (g) C (g) + 2 O (g) ΔrH°(0 K) = 369.42 ± 1.72 kcal/molRuscic G3X
0.0054942.5 HC(O)OH (g, syn) → HC(O)O (g, 2B2) H (g) ΔrH°(0 K) = 113.0 ± 0.6 (×3.084) kcal/molFeller 2003c


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.