Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Cyclopropynyl

Formula: CH(CC) (g)
CAS RN: 119178-99-3
ATcT ID: 119178-99-3*0
SMILES: [CH]1C#C1
InChI: InChI=1S/C3H/c1-2-3-1/h1H
InChIKey: BNZFPDMLDDZTCS-UHFFFAOYSA-N
Hills Formula: C3H1

2D Image:

[CH]1C#C1
Aliases: CH(CC); Cyclopropynyl; Cyclopropynylidyne; 2-Cyclopropyn-1-yl; cyc-C3H; HC(CC); CH(C~C)
Relative Molecular Mass: 37.0400 ± 0.0024

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
711.28715.40± 0.71kJ/mol

3D Image of CH(CC) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH(CC) (g)

The 20 contributors listed below account only for 70.1% of the provenance of ΔfH° of CH(CC) (g).
A total of 55 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
21.33685.1 CH4 (g) → CH(CC) (g) + 11/2 H2 (g) ΔrH°(0 K) = 910.77 ± 1.5 kJ/molKlippenstein 2017
20.73689.14 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -12.15 ± 1.5 kJ/molKlippenstein 2017
2.93689.1 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -12 ± 4 kJ/molCostes 2009, est unc
2.93689.10 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -12.90 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
2.93689.2 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -11 ± 4 kJ/molCostes 2006, note unc
1.83689.3 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -13 ± 5 kJ/molGu 2007
1.43681.5 CH(CC) (g) → [CCCH]+ (g) ΔrH°(0 K) = 9.226 ± 0.040 eVRuscic W1RO
1.43687.1 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 8.44 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
1.33679.6 CH(CC) (g) → 3 C (g) H (g) ΔrH°(0 K) = 1637.17 ± 6 kJ/molAguilera-Iparraguirre 2008, est unc
1.23689.12 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -14.1 ± 6 kJ/molMebel 2007, est unc
1.23689.9 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -8.6 ± 6 kJ/molKaiser 1996a, Ochsenfeld 1997, est unc
1.23689.11 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -11.7 ± 6 kJ/molCostes 2009, est unc
1.23686.11 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 1.99 ± 1 kcal/molSancho-Garcia 2002, Wang 2007, Stanton 1995, Ochsenfeld 1997, est unc
1.23686.9 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 678 ± 350 cm-1Wang 2007, est unc
1.23679.5 CH(CC) (g) → 3 C (g) H (g) ΔrH°(0 K) = 391.93 ± 1.50 kcal/molRuscic W1RO
1.13689.8 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -3.30 ± 1.50 kcal/molParthiban 2001
1.13684.6 [CH(CC)]- (g) → 3 C (g) H (g) ΔrH°(0 K) = 438.40 ± 1.50 kcal/molRuscic W1RO
1.03686.1 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 12 ± 4 (×1.139) kJ/molCostes 2009, est unc
1.03679.2 CH(CC) (g) → 3 C (g) H (g) ΔrH°(0 K) = 392.55 ± 1.60 kcal/molRuscic G4
1.03689.5 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -4.01 ± 1.60 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH(CC) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
92.5 Cyclopropynyl anion[CH(CC)]- (g)[CH-]1C#C1518.40521.38± 0.76kJ/mol37.0406 ±
0.0024
136861-42-2*0
32.5 2-PropynylidyneCCCH (g)C#C[C]718.79723.14± 0.71kJ/mol37.0400 ±
0.0024
53590-28-6*0
30.9 2-Propynylidyne anion[CCCH]- (g)C#C[C-]540.80545.57± 0.75kJ/mol37.0406 ±
0.0024
82893-67-2*0
26.6 2-Propyn-1-ylium-1-ylidene[CCCH]+ (g)C#C[C+]1598.491602.87± 0.90kJ/mol37.0395 ±
0.0024
75104-46-0*0
18.3 Cyclopropenyliumdiyl[CH(CC)]+ (g)[CH+]1C#C11692.31695.3± 1.8kJ/mol37.0395 ±
0.0024
127476-05-5*0
14.2 Acetylene cation[HCCH]+ (g)C#[CH+]1328.911328.24± 0.12kJ/mol26.0367 ±
0.0016
25641-79-6*0
14.2 AcetyleneHCCH (g)C#C228.89228.34± 0.12kJ/mol26.0373 ±
0.0016
74-86-2*0
13.6 CarbonC (g)[C]711.393716.878± 0.040kJ/mol12.01070 ±
0.00080
7440-44-0*0
13.6 CarbonC (g, triplet)[C]711.393716.878± 0.040kJ/mol12.01070 ±
0.00080
7440-44-0*1
13.6 Carbon cationC+ (g)[C+]1797.8451803.443± 0.040kJ/mol12.01015 ±
0.00080
14067-05-1*0

Most Influential reactions involving CH(CC) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9663682.1 [CH(CC)]- (g) → CH(CC) (g) ΔrH°(0 K) = 1.999 ± 0.003 eVSheehan 2008
0.2213685.1 CH4 (g) → CH(CC) (g) + 11/2 H2 (g) ΔrH°(0 K) = 910.77 ± 1.5 kJ/molKlippenstein 2017
0.2163689.14 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -12.15 ± 1.5 kJ/molKlippenstein 2017
0.2103680.5 CH(CC) (g) → [CH(CC)]+ (g) ΔrH°(0 K) = 10.142 ± 0.040 eVRuscic W1RO
0.0643681.5 CH(CC) (g) → [CCCH]+ (g) ΔrH°(0 K) = 9.226 ± 0.040 eVRuscic W1RO
0.0633680.2 CH(CC) (g) → [CH(CC)]+ (g) ΔrH°(0 K) = 10.176 ± 0.073 eVRuscic G4
0.0423687.1 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 8.44 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
0.0393680.1 CH(CC) (g) → [CH(CC)]+ (g) ΔrH°(0 K) = 10.169 ± 0.093 eVRuscic G3X
0.0383686.11 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 1.99 ± 1 kcal/molSancho-Garcia 2002, Wang 2007, Stanton 1995, Ochsenfeld 1997, est unc
0.0383686.9 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 678 ± 350 cm-1Wang 2007, est unc
0.0343680.3 CH(CC) (g) → [CH(CC)]+ (g) ΔrH°(0 K) = 10.208 ± 0.099 eVRuscic CBS-n
0.0323686.1 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 12 ± 4 (×1.139) kJ/molCostes 2009, est unc
0.0303689.1 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -12 ± 4 kJ/molCostes 2009, est unc
0.0303689.2 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -11 ± 4 kJ/molCostes 2006, note unc
0.0303689.10 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -12.90 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
0.0273686.8 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 7.1 ± 5 kJ/molKaiser 1996a, Ochsenfeld 1997, est unc
0.0263686.7 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 1.88 ± 1.2 kcal/molRuscic W1RO
0.0223686.3 CH(CC) (g) → CCCH (g) ΔrH°(0 K) = 2.00 ± 1.3 kcal/molRuscic G4
0.0193689.3 C (g) HCCH (g) → CH(CC) (g) H (g) ΔrH°(0 K) = -13 ± 5 kJ/molGu 2007
0.0193681.2 CH(CC) (g) → [CCCH]+ (g) ΔrH°(0 K) = 9.199 ± 0.073 eVRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.