Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Carbonic acid

Formula: C(O)(OH)2 (g, cis-trans)
CAS RN: 463-79-6
ATcT ID: 463-79-6*2
SMILES: OC(=O)O
InChI: InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4)
InChIKey: BVKZGUZCCUSVTD-UHFFFAOYSA-N
Hills Formula: C1H2O3

2D Image:

OC(=O)O
Aliases: C(O)(OH)2; Carbonic acid; Acid of air; NSC 81688; OC(OH)2; OHC(O)OH; HOC(O)OH; H2CO3
Relative Molecular Mass: 62.0248 ± 0.0012

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-596.43-606.54± 0.73kJ/mol

3D Image of C(O)(OH)2 (g, cis-trans)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C(O)(OH)2 (g, cis-trans)

The 20 contributors listed below account only for 58.0% of the provenance of ΔfH° of C(O)(OH)2 (g, cis-trans).
A total of 66 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.53136.11 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrG°(210 K) = 4.02 ± 1.21 kJ/molBernard 2011, Schwerdtfeger 2011a, est unc
5.43132.7 C(O)(OH)2 (g, cis-trans) → C (g) + 3 O (g) + 2 H (g) ΔrH°(0 K) = 592.58 ± 0.75 kcal/molLee 2021, est unc
4.73142.6 C(O)(OH)2 (g, cis-trans) → CO2 (g) H2O (g) ΔrH°(0 K) = -8.72 ± 0.8 kcal/molNguyen 2008a, est unc
3.23141.5 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.57 ± 0.85 kcal/molRuscic W1RO
2.93141.2 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.40 ± 0.90 kcal/molRuscic G4
2.93141.4 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.51 ± 0.90 kcal/molRuscic CBS-n
2.93141.1 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.52 ± 0.90 kcal/molRuscic G3X
2.33141.3 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.46 ± 1.0 kcal/molRuscic CBS-n
1.93136.6 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.57 ± 0.8 kcal/molReisenauer 2014, est unc
1.93136.7 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.52 ± 0.8 kcal/molNguyen 2008a, est unc
1.73140.11 C(O)(OH)2 (g, cis-cis) → CO2 (g) H2O (g) ΔrH°(0 K) = -30.14 ± 2.0 kJ/molKlippenstein 2017
1.73134.1 CH4 (g) + 3 H2O (g) → C(O)(OH)2 (g, cis-cis) + 4 H2 (g) ΔrH°(0 K) = 181.13 ± 2.0 kJ/molKlippenstein 2017
1.63136.5 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.54 ± 0.85 kcal/molRuscic W1RO
1.53136.2 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.50 ± 0.90 kcal/molRuscic G4
1.53136.4 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.51 ± 0.90 kcal/molRuscic CBS-n
1.53136.1 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.50 ± 0.90 kcal/molRuscic G3X
1.33138.5 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.33 ± 0.85 kcal/molRuscic W1RO
1.33142.5 C(O)(OH)2 (g, cis-trans) → CO2 (g) H2O (g) ΔrH°(0 K) = -8.47 ± 1.50 kcal/molRuscic W1RO
1.33132.5 C(O)(OH)2 (g, cis-trans) → C (g) + 3 O (g) + 2 H (g) ΔrH°(0 K) = 593.66 ± 1.50 kcal/molRuscic W1RO
1.33132.6 C(O)(OH)2 (g, cis-trans) → C (g) + 3 O (g) + 2 H (g) ΔrH°(0 K) = 592.47 ± 1.5 kcal/molNguyen 2008a, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of C(O)(OH)2 (g, cis-trans)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
49.2 Carbonic acidC(O)(OH)2 (g, cis-cis)OC(=O)O-602.24-612.42± 0.55kJ/mol62.0248 ±
0.0012
463-79-6*1
49.2 Carbonic acidC(O)(OH)2 (g)OC(=O)O-602.24-611.56± 0.55kJ/mol62.0248 ±
0.0012
463-79-6*0
34.9 Carbonic acidC(O)(OH)2 (g, trans-trans)OC(=O)O-561.24-570.09± 0.91kJ/mol62.0248 ±
0.0012
463-79-6*3
21.9 Formic acidHC(O)OH (g, syn)C(=O)O-370.98-378.30± 0.20kJ/mol46.0254 ±
0.0010
64-18-6*1
21.9 Formic acidHC(O)OH (g)C(=O)O-370.98-378.27± 0.20kJ/mol46.0254 ±
0.0010
64-18-6*0
18.2 Formic acid cation[HC(O)OH]+ (g)[CH+](=O)O722.00715.46± 0.24kJ/mol46.0248 ±
0.0010
50614-05-6*0
18.2 Formic acid cation[HC(O)OH]+ (g, syn)[CH+](=O)O722.00714.91± 0.24kJ/mol46.0248 ±
0.0010
50614-05-6*1
14.6 Methyl hydrocarbonateC(O)(OH)OCH3 (g, cis-cis)C(=O)(O)OC-576.99-592.55± 0.87kJ/mol76.0514 ±
0.0019
7456-87-3*1
14.6 Methyl hydrocarbonateC(O)(OH)OCH3 (g)C(=O)(O)OC-576.99-591.80± 0.87kJ/mol76.0514 ±
0.0019
7456-87-3*0
14.3 Formic acidHC(O)OH (cr,l)C(=O)O-431.46-424.63± 0.20kJ/mol46.0254 ±
0.0010
64-18-6*500

Most Influential reactions involving C(O)(OH)2 (g, cis-trans)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2993136.11 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrG°(210 K) = 4.02 ± 1.21 kJ/molBernard 2011, Schwerdtfeger 2011a, est unc
0.0703138.5 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.33 ± 0.85 kcal/molRuscic W1RO
0.0623138.1 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.39 ± 0.90 kcal/molRuscic G3X
0.0623138.2 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.28 ± 0.90 kcal/molRuscic G4
0.0623138.4 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.54 ± 0.90 kcal/molRuscic CBS-n
0.0543132.7 C(O)(OH)2 (g, cis-trans) → C (g) + 3 O (g) + 2 H (g) ΔrH°(0 K) = 592.58 ± 0.75 kcal/molLee 2021, est unc
0.0503138.3 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.56 ± 1.0 kcal/molRuscic CBS-n
0.0503138.6 C(O)(OH)2 (g, cis-trans) → C(O)(OH)2 (g, trans-trans) ΔrH°(0 K) = 8.19 ± 1.0 kcal/molde Marothy 2013, est unc
0.0473142.6 C(O)(OH)2 (g, cis-trans) → CO2 (g) H2O (g) ΔrH°(0 K) = -8.72 ± 0.8 kcal/molNguyen 2008a, est unc
0.0443141.5 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.57 ± 0.85 kcal/molRuscic W1RO
0.0393141.1 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.52 ± 0.90 kcal/molRuscic G3X
0.0393141.4 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.51 ± 0.90 kcal/molRuscic CBS-n
0.0393141.2 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.40 ± 0.90 kcal/molRuscic G4
0.0393136.6 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.57 ± 0.8 kcal/molReisenauer 2014, est unc
0.0393136.7 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.52 ± 0.8 kcal/molNguyen 2008a, est unc
0.0343136.5 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.54 ± 0.85 kcal/molRuscic W1RO
0.0323141.3 C(O)(OH)2 (g, cis-trans) CH2O (g) → 2 HC(O)OH (g, syn) ΔrH°(0 K) = -9.46 ± 1.0 kcal/molRuscic CBS-n
0.0303136.2 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.50 ± 0.90 kcal/molRuscic G4
0.0303136.4 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.51 ± 0.90 kcal/molRuscic CBS-n
0.0303136.1 C(O)(OH)2 (g, cis-cis) → C(O)(OH)2 (g, cis-trans) ΔrH°(0 K) = 1.50 ± 0.90 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.