Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Bromobenzene

Formula: C6H5Br (g)
CAS RN: 108-86-1
ATcT ID: 108-86-1*0
SMILES: c1ccc(cc1)Br
SMILES: c1ccccc1Br
InChI: InChI=1S/C6H5Br/c7-6-4-2-1-3-5-6/h1-5H
InChIKey: QARVLSVVCXYDNA-UHFFFAOYSA-N
Hills Formula: C6H5Br1

2D Image:

c1ccc(cc1)Br
Aliases: Bromobenzene; Monobromobenzene; Phenyl bromide; C6H5Br; NSC 6529
Relative Molecular Mass: 157.0079 ± 0.0049

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
127.0105.0± 1.3kJ/mol

3D Image of C6H5Br (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5Br (g)

The 20 contributors listed below account only for 83.3% of the provenance of ΔfH° of C6H5Br (g).
A total of 35 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.17431.1 C6H5Br (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/molChernick 1956, Hartley 1951
14.77444.1 C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l) ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/molChernick 1956, Hartley 1951
10.17425.2 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.827 ± 0.030 eVStevens 2009
6.77425.1 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.781 ± 0.029 (×1.269) eVStevens 2009
6.67424.1 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.049 eVStevens 2009
4.87425.5 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 273.5 ± 1 kcal/molPratt 1981
3.67412.4 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1276.98 ± 1.60 kcal/molRuscic G4
3.37424.2 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.069 eVStevens 2009
3.17412.3 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.62 ± 1.72 kcal/molRuscic G3X
2.57426.1 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.76 ± 0.02 (×3.018) eVRosenstock 1980, Baer 1982
1.97425.7 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.75 ± 0.05 (×1.354) eVSergeev 1970
1.87426.2 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.81 ± 0.07 eVDunbar 1984
1.57446.1 C6H5I (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/molChernick 1956, Hartley 1951
1.47426.3 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.90 ± 0.05 (×1.61) eVLifshitz 1991, est unc
1.17425.6 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.73 ± 0.05 (×1.756) eVMalinovich 1985
0.97455.1 C6H5NO (g) → [C6H5]+ (g) NO (g) ΔrH°(0 K) = 10.607 ± 0.020 eVStevens 2010a
0.97426.4 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.74 ± 0.10 eVDunbar 1985, Dunbar 1984, est unc
0.97443.1 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1526.32 ± 2.0 kcal/molSmith 1956
0.86946.9 [C6H5]+ (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4198.8 ± 4 kJ/molLau 2006
0.76944.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5Br (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Bromobenzene cation[C6H5Br]+ (g)c1ccc(cc1)[Br+]995.1973.6± 1.3kJ/mol157.0074 ±
0.0049
55450-33-4*0
99.1 BromobenzeneC6H5Br (cr,l)c1ccc(cc1)Br60.3± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*500
44.2 Phenylium[C6H5]+ (g)c1cccc[c+]11149.321136.54± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*0
44.2 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11149.321136.54± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*2
38.9 IodobenzeneC6H5I (cr,l)c1ccc(cc1)I113.7113.8± 1.1kJ/mol204.0084 ±
0.0048
591-50-4*500
38.7 IodobenzeneC6H5I (g)c1ccc(cc1)I178.62162.64± 0.99kJ/mol204.0084 ±
0.0048
591-50-4*0
38.6 Iodobenzene cation[C6H5I]+ (g)c1ccc(cc1)[I+]1023.621008.19± 0.99kJ/mol204.0078 ±
0.0048
38406-85-8*0
16.6 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O217.0200.0± 1.2kJ/mol107.1100 ±
0.0048
586-96-9*0
16.6 Phenylium[C6H5]+ (g, triplet)c1cccc[c+]11251.31238.2± 1.6kJ/mol77.1034 ±
0.0048
17333-73-2*1
13.7 PhenylC6H5 (g)c1cccc[c]1352.64339.28± 0.60kJ/mol77.1039 ±
0.0048
2396-01-2*0

Most Influential reactions involving C6H5Br (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9797413.1 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 72570 ± 5 cm-1Kwon 2002
0.5877428.1 C6H5Br (cr,l) → C6H5Br (g) ΔrH°(298.15 K) = 44.54 ± 0.22 kJ/molMajer 1985, Wadso 1968
0.3157428.3 C6H5Br (cr,l) → C6H5Br (g) ΔrH°(298.15 K) = 44.84 ± 0.30 kJ/molBasarova 1991, Boublik 1984, Boublik 1984
0.1707425.2 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.827 ± 0.030 eVStevens 2009
0.1137425.1 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.781 ± 0.029 (×1.269) eVStevens 2009
0.0907428.2 C6H5Br (cr,l) → C6H5Br (g) ΔrH°(298.15 K) = 44.79 ± 0.56 kJ/molThermoData 2004
0.0837424.1 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.049 eVStevens 2009
0.0817425.5 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 273.5 ± 1 kcal/molPratt 1981
0.0417424.2 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.069 eVStevens 2009
0.0387412.4 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1276.98 ± 1.60 kcal/molRuscic G4
0.0337425.7 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.75 ± 0.05 (×1.354) eVSergeev 1970
0.0327412.3 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.62 ± 1.72 kcal/molRuscic G3X
0.0197425.6 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.73 ± 0.05 (×1.756) eVMalinovich 1985
0.0097413.2 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.991 ± 0.002 (×3.221) eVHolland 2000
0.0047427.3 C6H5Br (g) → C6H5 (g) Br (g) ΔrH°(1080 K) = 78.1 ± 5 kcal/molRodgers 1967, Ladacki 1953, est unc
0.0036982.1 C6H5Br (g) → C6H4 (g) Br- (g) H+ (g) ΔrH°(298.15 K) = 397 ± 6 kcal/molWenthold 1994, note unc2
0.0017452.1 C6H5Br (g) [C6H5F]+ (g) → [C6H5Br]+ (g) C6H5F (g) ΔrH°(350 K) = -4.95 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0007413.8 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVBralsford 1960
0.0007413.7 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVWatanabe 1962
0.0007413.4 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVWalter 1991


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.