Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Isocyanic fluoride cation

Formula: [FNC]+ (g)
CAS RN: *16992-26-0
ATcT ID: *16992-26-0*0
SMILES: [C+]=NF
SMILES: FN=[C+]
InChI: InChI=1S/CFN/c1-3-2/q+1
InChIKey: LCVWPXSWTJOVSB-UHFFFAOYSA-N
Hills Formula: C1F1N1+

2D Image:

[C+]=NF
Aliases: [FNC]+; Isocyanic fluoride cation; Isocyanic fluoride ion (1+); (Fluoronitrilio)methyl; Isocyanogen fluoride cation; Isocyanogen fluoride ion (1+); Fluorine isocyanide cation; Fluorine isocyanide ion (1+); FNC+
Relative Molecular Mass: 45.01529 ± 0.00080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1618.01618.6± 4.0kJ/mol

3D Image of [FNC]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [FNC]+ (g)

The 7 contributors listed below account for 91.1% of the provenance of ΔfH° of [FNC]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
43.22885.4 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.657 ± 0.050 eVRuscic W1RO
16.92885.2 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.632 ± 0.080 eVRuscic G4
10.82885.1 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.650 ± 0.100 eVRuscic G3X
8.92885.3 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.659 ± 0.110 eVRuscic CBS-n
6.92889.10 FCN (g) → FNC (g) ΔrH°(0 K) = 293.8 ± 2.5 kJ/molKlopper 2010a
2.42889.9 FCN (g) → FNC (g) ΔrH°(0 K) = 69.5 ± 1.0 kcal/molLee 1995b, Lee 1995a
1.72889.8 FCN (g) → FNC (g) ΔrH°(0 K) = 70.29 ± 1.2 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of [FNC]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
44.8 Isocyanic fluorideFNC (g)[C]=NF300.9302.7± 1.8kJ/mol45.01584 ±
0.00080
16992-26-0*0
18.5 Cyanic fluorideFCN (g)N#CF8.498.82± 0.74kJ/mol45.01584 ±
0.00080
1495-50-7*0
14.1 Isocyanic fluoride anion[FNC]- (g)[C-]=NF73.975.6± 5.7kJ/mol45.01639 ±
0.00080
357426-78-9*0
12.3 Cyanic fluoride cation[FCN]+ (g)N#[C+]F1294.21294.6± 1.1kJ/mol45.01529 ±
0.00080
62532-69-8*0
4.7 Cyanic fluoride anion[FCN]- (g)[N-]#CF-20.7-18.7± 2.9kJ/mol45.01639 ±
0.00080
34507-50-1*0
2.2 Cyanogen chlorideClCN (g)N#CCl135.14135.84± 0.43kJ/mol61.4701 ±
0.0012
506-77-4*0
2.1 FluoromethaneCH3F (g)CF-227.44-235.47± 0.24kJ/mol34.03292 ±
0.00083
593-53-3*0
2.0 FluoromethaneCH3F (l)CF-251.65± 0.25kJ/mol34.03292 ±
0.00083
593-53-3*590
1.9 FluoroacetyleneHCCF (g)C#CF104.99105.71± 0.39kJ/mol44.0277 ±
0.0016
2713-09-9*0
1.7 Hydrogen cyanideHCN (g)C#N129.688129.303± 0.087kJ/mol27.02538 ±
0.00081
74-90-8*0

Most Influential reactions involving [FNC]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5412885.4 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.657 ± 0.050 eVRuscic W1RO
0.2112885.2 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.632 ± 0.080 eVRuscic G4
0.1352885.1 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.650 ± 0.100 eVRuscic G3X
0.1112885.3 FNC (g) → [FNC]+ (g) ΔrH°(0 K) = 13.659 ± 0.110 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.