Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Fluoromethane

Formula: CH3F (l)
CAS RN: 593-53-3
ATcT ID: 593-53-3*590
SMILES: CF
InChI: InChI=1S/CH3F/c1-2/h1H3
InChIKey: NBVXSUQYWXRMNV-UHFFFAOYSA-N
Hills Formula: C1H3F1

2D Image:

CF
Aliases: CH3F; Fluoromethane; Methyl fluoride; Methyl monofluoride; Monofluoromethane; Carbon monofluoride; Monofluorocarbon; MeF; UN 2454; Freon 41; HFC 41; FC 41; R 41
Relative Molecular Mass: 34.03292 ± 0.00083

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-251.65± 0.25kJ/mol

Top contributors to the provenance of ΔfH° of CH3F (l)

The 20 contributors listed below account only for 45.1% of the provenance of ΔfH° of CH3F (l).
A total of 196 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
11.36306.7 CH3F (g) → CF4 (g) + 3 CH4 (g) ΔrH°(0 K) = -218.8 ± 2.5 kJ/molKlopper 2010a, est unc
3.06653.11 CH3CH2F (g) CH4 (g) → CH3F (g) CH3CH3 (g) ΔrH°(0 K) = 6.78 ± 0.20 kcal/molKarton 2011
3.06298.5 CH3F (g) → C (g) + 3 H (g) F (g) ΔrH°(0 K) = 397.68 ± 0.30 kcal/molKarton 2011
2.46552.7 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -33.23 ± 0.9 kcal/molRuscic W1RO
2.46733.12 HCCH (g) CH3F (g) → HCCF (g) CH4 (g) ΔrH°(0 K) = 8.81 ± 0.20 kcal/molKarton 2011
2.06716.12 FCCF (g) → 2 C (g) + 2 F (g) ΔrH°(0 K) = 376.20 ± 0.30 kcal/molKarton 2011
2.06444.9 CH2F2 (g) CH4 (g) → 2 CH3F (g) ΔrH°(0 K) = 55.5 ± 2.5 kJ/molKlopper 2010a, est unc
1.96734.12 HCCF (g) CH3F (g) → FCCF (g) CH4 (g) ΔrH°(0 K) = 14.03 ± 0.20 kcal/molKarton 2011
1.96552.4 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -33.21 ± 1.0 kcal/molRuscic G4
1.96552.6 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -34.11 ± 1.0 kcal/molRuscic CBS-n
1.96688.11 CH2CHF (g) CH4 (g) → CH2CH2 (g) CH3F (g) ΔrH°(0 K) = 8.36 ± 0.20 kcal/molKarton 2011
1.66552.3 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -33.29 ± 1.1 kcal/molRuscic G3X
1.36653.10 CH3CH2F (g) CH4 (g) → CH3F (g) CH3CH3 (g) ΔrH°(0 K) = 6.77 ± 0.30 kcal/molKarton 2011
1.26301.1 CH3F (g) → C (g) + 3/2 H2 (g) + 1/2 F2 (g) ΔrH°(0 K) = 940.16 ± 2.0 kJ/molCsontos 2010
1.16552.5 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -32.45 ± 1.3 kcal/molRuscic CBS-n
1.06309.12 CH3F (l) → CH3F (g) ΔrG°(291.98 K) = -8.498 ± 0.200 kJ/molDemiriz 1993, 3rd Law, est unc
1.06309.16 CH3F (l) → CH3F (g) ΔrG°(217.885 K) = -2.035 ± 0.200 kJ/molMichels 1948, 3rd Law, est unc
1.06309.5 CH3F (l) → CH3F (g) ΔrG°(175 K) = 1.777 ± 0.200 kJ/molLi 1961, 3rd Law, est unc
1.06309.1 CH3F (l) → CH3F (g) ΔrG°(165 K) = 2.699 ± 0.200 kJ/molOi 1983, 3rd Law, est unc
1.06309.9 CH3F (l) → CH3F (g) ΔrG°(298.38 K) = -9.053 ± 0.200 kJ/molBominaar 1987, 3rd Law, est unc
11.36306.7 CH3F (g) → CF4 (g) + 3 CH4 (g) ΔrH°(0 K) = -218.8 ± 2.5 kJ/molKlopper 2010a, est unc
3.06653.11 CH3CH2F (g) CH4 (g) → CH3F (g) CH3CH3 (g) ΔrH°(0 K) = 6.78 ± 0.20 kcal/molKarton 2011
3.06298.5 CH3F (g) → C (g) + 3 H (g) F (g) ΔrH°(0 K) = 397.68 ± 0.30 kcal/molKarton 2011
2.46552.7 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -33.23 ± 0.9 kcal/molRuscic W1RO
2.46733.12 HCCH (g) CH3F (g) → HCCF (g) CH4 (g) ΔrH°(0 K) = 8.81 ± 0.20 kcal/molKarton 2011
2.06716.12 FCCF (g) → 2 C (g) + 2 F (g) ΔrH°(0 K) = 376.20 ± 0.30 kcal/molKarton 2011
2.06444.9 CH2F2 (g) CH4 (g) → 2 CH3F (g) ΔrH°(0 K) = 55.5 ± 2.5 kJ/molKlopper 2010a, est unc
1.96734.12 HCCF (g) CH3F (g) → FCCF (g) CH4 (g) ΔrH°(0 K) = 14.03 ± 0.20 kcal/molKarton 2011
1.96552.4 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -33.21 ± 1.0 kcal/molRuscic G4
1.96552.6 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -34.11 ± 1.0 kcal/molRuscic CBS-n
1.96688.11 CH2CHF (g) CH4 (g) → CH2CH2 (g) CH3F (g) ΔrH°(0 K) = 8.36 ± 0.20 kcal/molKarton 2011
1.66552.3 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -33.29 ± 1.1 kcal/molRuscic G3X
1.36653.10 CH3CH2F (g) CH4 (g) → CH3F (g) CH3CH3 (g) ΔrH°(0 K) = 6.77 ± 0.30 kcal/molKarton 2011
1.26301.1 CH3F (g) → C (g) + 3/2 H2 (g) + 1/2 F2 (g) ΔrH°(0 K) = 940.16 ± 2.0 kJ/molCsontos 2010
1.16552.5 CH3F (g) → CHF3 (g) + 2 CH4 (g) ΔrH°(0 K) = -32.45 ± 1.3 kcal/molRuscic CBS-n
1.06309.12 CH3F (l) → CH3F (g) ΔrG°(291.98 K) = -8.498 ± 0.200 kJ/molDemiriz 1993, 3rd Law, est unc
1.06309.16 CH3F (l) → CH3F (g) ΔrG°(217.885 K) = -2.035 ± 0.200 kJ/molMichels 1948, 3rd Law, est unc
1.06309.5 CH3F (l) → CH3F (g) ΔrG°(175 K) = 1.777 ± 0.200 kJ/molLi 1961, 3rd Law, est unc
1.06309.1 CH3F (l) → CH3F (g) ΔrG°(165 K) = 2.699 ± 0.200 kJ/molOi 1983, 3rd Law, est unc
1.06309.9 CH3F (l) → CH3F (g) ΔrG°(298.38 K) = -9.053 ± 0.200 kJ/molBominaar 1987, 3rd Law, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3F (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
95.6 FluoromethaneCH3F (g)CF-227.44-235.47± 0.24kJ/mol34.03292 ±
0.00083
593-53-3*0
95.6 FluoromethaneCH3F (g)CF-227.44-235.47± 0.24kJ/mol34.03292 ±
0.00083
593-53-3*0
36.2 Fluoromethane cation[CH3F]+ (g)C[F+]981.82974.32± 0.62kJ/mol34.03237 ±
0.00083
59122-96-2*0
36.2 Fluoromethane cation[CH3F]+ (g)C[F+]981.82974.32± 0.62kJ/mol34.03237 ±
0.00083
59122-96-2*0
30.4 1,2-DifluoroacetyleneFCCF (g)FC#CF2.855.67± 0.63kJ/mol62.0182 ±
0.0016
689-99-6*0
30.4 1,2-DifluoroacetyleneFCCF (g)FC#CF2.855.67± 0.63kJ/mol62.0182 ±
0.0016
689-99-6*0
24.0 DifluoromethaneCH2F2 (g)C(F)F-443.32-450.93± 0.35kJ/mol52.02339 ±
0.00081
75-10-5*0
24.0 DifluoromethaneCH2F2 (g)C(F)F-443.32-450.93± 0.35kJ/mol52.02339 ±
0.00081
75-10-5*0
23.9 Vinyl fluorideCH2CHF (g)C=CF-134.50-142.31± 0.45kJ/mol46.0436 ±
0.0016
75-02-5*0
23.9 Vinyl fluorideCH2CHF (g)C=CF-134.50-142.31± 0.45kJ/mol46.0436 ±
0.0016
75-02-5*0
23.4 FluoroacetyleneHCCF (g)C#CF104.99105.71± 0.39kJ/mol44.0277 ±
0.0016
2713-09-9*0
23.4 FluoroacetyleneHCCF (g)C#CF104.99105.71± 0.39kJ/mol44.0277 ±
0.0016
2713-09-9*0
22.5 DifluoromethaneCH2F2 (l)C(F)F-468.91± 0.37kJ/mol52.02339 ±
0.00081
75-10-5*590
22.5 DifluoromethaneCH2F2 (l)C(F)F-468.91± 0.37kJ/mol52.02339 ±
0.00081
75-10-5*590
21.9 FluoroethaneCH3CH2F (g)CCF-257.24-272.10± 0.35kJ/mol48.0595 ±
0.0016
353-36-6*0
21.9 FluoroethaneCH3CH2F (g)CCF-257.24-272.10± 0.35kJ/mol48.0595 ±
0.0016
353-36-6*0
17.6 DifluorobromomethaneCHF2Br (g)C(F)(F)Br-411.40-424.59± 0.47kJ/mol130.9194 ±
0.0013
1511-62-2*0
17.6 DifluorobromomethaneCHF2Br (g)C(F)(F)Br-411.40-424.59± 0.47kJ/mol130.9194 ±
0.0013
1511-62-2*0
16.9 FluoroformCHF3 (g)C(F)(F)F-689.28-696.23± 0.40kJ/mol70.01385 ±
0.00080
75-46-7*0
16.9 FluoroformCHF3 (g)C(F)(F)F-689.28-696.23± 0.40kJ/mol70.01385 ±
0.00080
75-46-7*0

Most Influential reactions involving CH3F (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1266309.11 CH3F (l) → CH3F (g) ΔrG°(298.38 K) = -9.054 ± 0.200 kJ/molBiswas 1989, 3rd Law, est unc
0.1266309.1 CH3F (l) → CH3F (g) ΔrG°(165 K) = 2.699 ± 0.200 kJ/molOi 1983, 3rd Law, est unc
0.1266309.5 CH3F (l) → CH3F (g) ΔrG°(175 K) = 1.777 ± 0.200 kJ/molLi 1961, 3rd Law, est unc
0.1266309.9 CH3F (l) → CH3F (g) ΔrG°(298.38 K) = -9.053 ± 0.200 kJ/molBominaar 1987, 3rd Law, est unc
0.1266309.12 CH3F (l) → CH3F (g) ΔrG°(291.98 K) = -8.498 ± 0.200 kJ/molDemiriz 1993, 3rd Law, est unc
0.1266309.16 CH3F (l) → CH3F (g) ΔrG°(217.885 K) = -2.035 ± 0.200 kJ/molMichels 1948, 3rd Law, est unc
0.0806309.7 CH3F (l) → CH3F (g) ΔrG°(179.733 K) = 1.343 ± 0.250 kJ/molFonseca 1988, Fonseca 1989, 3rd Law, est unc
0.0806309.3 CH3F (l) → CH3F (g) ΔrG°(170.67 K) = 2.188 ± 0.250 kJ/molSenra 2002, Fonseca 1989, 3rd Law, est unc
0.0206309.17 CH3F (l) → CH3F (g) ΔrH°(217.885 K) = 17.19 ± 0.50 kJ/molMichels 1948, 2nd Law, est unc
0.0206309.6 CH3F (l) → CH3F (g) ΔrH°(175 K) = 17.893 ± 0.50 kJ/molLi 1961, 2nd Law, est unc
0.0146309.8 CH3F (l) → CH3F (g) ΔrH°(179.733 K) = 17.642 ± 0.600 kJ/molFonseca 1988, Fonseca 1989, 2nd Law, est unc
0.0146309.4 CH3F (l) → CH3F (g) ΔrH°(170.67 K) = 18.008 ± 0.600 kJ/molSenra 2002, Fonseca 1989, 2nd Law, est unc
0.0056309.10 CH3F (l) → CH3F (g) ΔrH°(298.38 K) = 17.16 ± 1.00 kJ/molBominaar 1987, 2nd Law, est unc
0.0056309.13 CH3F (l) → CH3F (g) ΔrH°(291.98 K) = 16.96 ± 1.00 kJ/molDemiriz 1993, 2nd Law, est unc
0.0016309.22 CH3F (l) → CH3F (g) ΔrH°(298.15 K) = 4.196 ± 0.5 kcal/molGrosse 1940, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.