Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Hydrogen bromide

Formula: HBr (aq, 5 H2O)
CAS RN: 10035-10-6
ATcT ID: 10035-10-6*809
SMILES: Br
InChI: InChI=1S/BrH/h1H
InChIKey: CPELXLSAUQHCOX-UHFFFAOYSA-N
Hills Formula: Br1H1

2D Image:

Br
Aliases: HBr; Hydrogen bromide; Hydrogen monobromide; Hydrobromic acid; Bromhydric acid; Bromohydric acid; Bromohydrogen; Bromic acid; Bromine hydride; Bromine monohydride; UN 1048; UN 1788
Relative Molecular Mass: 80.9119 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-110.68± 0.12kJ/mol

Top contributors to the provenance of ΔfH° of HBr (aq, 5 H2O)

The 20 contributors listed below account only for 72.7% of the provenance of ΔfH° of HBr (aq, 5 H2O).
A total of 105 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
23.69864.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 kcal/molJohnson 1963
12.21209.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 cm-1Haugh 1971, Norling 1935
10.01108.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
7.31138.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
2.31209.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×3.018) cm-1Penno 1998, Norling 1935, est unc
2.01135.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
1.71199.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×4.269) kJ/molJohnson 1963, as quoted by CODATA Key Vals
1.71199.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×2.134) kJ/molSunner 1964, as quoted by CODATA Key Vals
1.21199.3 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/molThomsen 1882, as quoted by CODATA Key Vals
1.21356.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
1.06331.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 (×2.954) eVSong 2001
1.03108.2 HCO (g) HBr (g) → CH2O (g) Br (g) ΔrG°(385 K) = 6.79 ± 0.64 (×1.297) kJ/molBecerra 1997, Nava 1981, 3rd Law, note unc
1.01126.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008
1.01127.6 HBr (g) Cl (g) → HCl (g) Br (g) ΔrH°(0 K) = -15.68 ± 0.2 kcal/molFeller 2008
0.91300.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008
0.86675.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
0.86333.3 CH3Br (g) HBr (g) → Br2 (g) CH4 (g) ΔrG°(712.2 K) = 35.8 ± 1.6 kJ/molFerguson 1973, 3rd Law
0.72403.1 CH4 (g) Br (g) → CH3 (g) HBr (g) ΔrH°(0 K) = 5929 ± 80 cm-1Czako 2013
0.62049.2 [ON(O)O]- (g) HBr (g) → Br- (g) HON(O)O (g) ΔrH°(391 K) = -1.03 ± 0.21 kcal/molDavidson 1977, 2nd Law
0.64353.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of HBr (aq, 5 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.25± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*842
99.8 Hydrogen bromideHBr (aq, 50 H2O)Br-119.10± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*822
99.8 Hydrogen bromideHBr (aq, 200 H2O)Br-119.75± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*830
99.8 Hydrogen bromideHBr (aq, 4000 H2O)Br-120.28± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*843
99.8 Hydrogen bromideHBr (aq, 150 H2O)Br-119.66± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*829
99.8 Hydrogen bromideHBr (aq, 30 H2O)Br-118.58± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*820
99.8 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.20± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*841
99.8 Hydrogen bromideHBr (aq, 1500 H2O)Br-120.17± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*840
99.8 Hydrogen bromideHBr (aq, 1000 H2O)Br-120.10± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*839
99.8 Hydrogen bromideHBr (aq, 10 H2O)Br-115.90± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*815

Most Influential reactions involving HBr (aq, 5 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001146.1 HBr (aq, 5 H2O) → HBr (aq, 3000 H2O) ΔrH°(298.15 K) = -9.572 ± 0.004 kJ/molNBS Tables 1989, Parker 1965, NBS TN270


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.