Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Bromoform

Formula: CHBr3 (g)
CAS RN: 75-25-2
ATcT ID: 75-25-2*0
SMILES: C(Br)(Br)Br
InChI: InChI=1S/CHBr3/c2-1(3)4/h1H
InChIKey: DIKBFYAXUHHXCS-UHFFFAOYSA-N
Hills Formula: C1H1Br3

2D Image:

C(Br)(Br)Br
Aliases: CHBr3; Bromoform; Tribromomethane; Methane tribromide; Carbon tribromide; Methyl tribromide; Methenyl tribromide; Tribromocarbon; UN 2515; RCRA U225
Relative Molecular Mass: 252.7306 ± 0.0031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
80.9854.83± 0.70kJ/mol

3D Image of CHBr3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CHBr3 (g)

The 20 contributors listed below account only for 61.6% of the provenance of ΔfH° of CHBr3 (g).
A total of 75 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
7.06410.7 CHBr3 (g) → C (g) H (g) + 3 Br (g) ΔrH°(0 K) = 1200.4 ± 2.5 kJ/molBross 2023
5.36415.6 CHBr3 (g) + 3 H2 (g) → CH4 (g) + 3 HBr (g) ΔrH°(0 K) = -229.7 ± 2.5 kJ/molBross 2023
5.36533.6 CH2Br2 (g) CBr4 (g) → 2 CHBr3 (g) ΔrH°(0 K) = -10.7 ± 2.5 kJ/molBross 2023
4.76416.6 CHBr3 (g) + 2 H2 (g) → CH3Br (g) + 2 HBr (g) ΔrH°(0 K) = -156.0 ± 2.5 kJ/molBross 2023
3.66417.6 CHBr3 (g) + 2 CH4 (g) → 3 CH3Br (g) ΔrH°(0 K) = -8.6 ± 2.5 kJ/molBross 2023
3.66273.8 CBr4 (g) → C (g) + 4 Br (g) ΔrH°(0 K) = 1037.9 ± 2.5 kJ/molBross 2023
3.66274.6 CBr4 (g) + 4 H (g) → CH4 (g) + 4 Br (g) ΔrH°(0 K) = -604.0 ± 2.5 kJ/molBross 2023
3.51108.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
2.76337.7 CH3Br (g) + 3 Br (g) → CBr4 (g) + 3 H (g) ΔrH°(0 K) = 459.7 ± 2.5 kJ/molBross 2023
2.46532.6 CH3Br (g) CBr4 (g) → CH2Br2 (g) CHBr3 (g) ΔrH°(0 K) = -17.1 ± 2.5 kJ/molBross 2023
2.46414.1 CHBr3 (g) Br2 (g) → CBr4 (g) HBr (g) ΔrG°(588.3 K) = 3.27 ± 1.00 kJ/molKing 1971, 3rd Law
2.29864.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 kcal/molJohnson 1963
2.16277.7 CBr4 (g) + 4 H2 (g) → CH4 (g) + 4 HBr (g) ΔrH°(0 K) = -321.6 ± 2.5 kJ/molBross 2023
2.16462.2 CH2Br2 (g) HBr (g) → CHBr3 (g) H2 (g) ΔrH°(0 K) = 81.2 ± 2.5 kJ/molBross 2023
1.96533.4 CH2Br2 (g) CBr4 (g) → 2 CHBr3 (g) ΔrH°(0 K) = -2.00 ± 1.0 kcal/molRuscic G4
1.76344.7 CH3Br (g) + 3 HBr (g) → CBr4 (g) + 3 H2 (g) ΔrH°(0 K) = 247.9 ± 2.5 kJ/molBross 2023
1.76529.6 CH4 (g) CHBr3 (g) → CH2Br2 (g) CH3Br (g) ΔrH°(0 K) = -7.5 ± 2.5 kJ/molBross 2023
1.76465.2 CH2Br2 (g) CH3Br (g) → CHBr3 (g) CH4 (g) ΔrH°(0 K) = 7.5 ± 2.5 kJ/molBross 2023
1.66426.1 CHI3 (g) + 3 HBr (g) → CHBr3 (g) + 3 HI (g) ΔrH°(0 K) = 32.2 ± 2.5 kJ/molBross 2023
1.56533.3 CH2Br2 (g) CBr4 (g) → 2 CHBr3 (g) ΔrH°(0 K) = -2.21 ± 1.1 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CHBr3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.9 BromoformCHBr3 (l)C(Br)(Br)Br8.78± 0.71kJ/mol252.7306 ±
0.0031
75-25-2*590
71.5 TetrabromomethaneCBr4 (g)BrC(Br)(Br)Br144.80115.10± 0.73kJ/mol331.6267 ±
0.0041
558-13-4*0
54.8 TetrabromomethaneCBr4 (cr, monoclinic)BrC(Br)(Br)Br60.61± 0.96kJ/mol331.6267 ±
0.0041
558-13-4*500
49.6 DibromomethaneCH2Br2 (g)C(Br)Br27.015.61± 0.59kJ/mol173.8346 ±
0.0022
74-95-3*0
48.1 DibromomethaneCH2Br2 (l)C(Br)Br-31.42± 0.61kJ/mol173.8346 ±
0.0022
74-95-3*590
39.4 BromomethaneCH3Br (g)CBr-20.45-35.85± 0.19kJ/mol94.9385 ±
0.0013
74-83-9*0
38.2 Bromomethane cation[CH3Br]+ (g)C[Br+]996.66981.75± 0.20kJ/mol94.9380 ±
0.0013
12538-70-4*0
37.3 BromomethaneCH3Br (l)CBr-56.17-59.19± 0.20kJ/mol94.9385 ±
0.0013
74-83-9*590
34.1 Hydrogen bromideHBr (g)Br-27.51-35.36± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*0
34.1 Bromoniumyl[HBr]+ (g)[BrH+]1098.161090.32± 0.12kJ/mol80.9114 ±
0.0010
12258-64-9*0

Most Influential reactions involving CHBr3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9966423.1 CHBr3 (l) → CHBr3 (g) ΔrH°(298.15 K) = 46.05 ± 0.10 kJ/molLaynez 1972
0.3726426.1 CHI3 (g) + 3 HBr (g) → CHBr3 (g) + 3 HI (g) ΔrH°(0 K) = 32.2 ± 2.5 kJ/molBross 2023
0.3406413.1 CHBr3 (g) Cl (g) → CHClBr2 (g) Br (g) ΔrH°(0 K) = -0.619 ± 0.061 eVShuman 2008a
0.2966414.1 CHBr3 (g) Br2 (g) → CBr4 (g) HBr (g) ΔrG°(588.3 K) = 3.27 ± 1.00 kJ/molKing 1971, 3rd Law
0.1586533.6 CH2Br2 (g) CBr4 (g) → 2 CHBr3 (g) ΔrH°(0 K) = -10.7 ± 2.5 kJ/molBross 2023
0.0926532.6 CH3Br (g) CBr4 (g) → CH2Br2 (g) CHBr3 (g) ΔrH°(0 K) = -17.1 ± 2.5 kJ/molBross 2023
0.0776417.6 CHBr3 (g) + 2 CH4 (g) → 3 CH3Br (g) ΔrH°(0 K) = -8.6 ± 2.5 kJ/molBross 2023
0.0746410.7 CHBr3 (g) → C (g) H (g) + 3 Br (g) ΔrH°(0 K) = 1200.4 ± 2.5 kJ/molBross 2023
0.0696415.6 CHBr3 (g) + 3 H2 (g) → CH4 (g) + 3 HBr (g) ΔrH°(0 K) = -229.7 ± 2.5 kJ/molBross 2023
0.0676465.2 CH2Br2 (g) CH3Br (g) → CHBr3 (g) CH4 (g) ΔrH°(0 K) = 7.5 ± 2.5 kJ/molBross 2023
0.0676529.6 CH4 (g) CHBr3 (g) → CH2Br2 (g) CH3Br (g) ΔrH°(0 K) = -7.5 ± 2.5 kJ/molBross 2023
0.0656462.2 CH2Br2 (g) HBr (g) → CHBr3 (g) H2 (g) ΔrH°(0 K) = 81.2 ± 2.5 kJ/molBross 2023
0.0636416.6 CHBr3 (g) + 2 H2 (g) → CH3Br (g) + 2 HBr (g) ΔrH°(0 K) = -156.0 ± 2.5 kJ/molBross 2023
0.0566533.4 CH2Br2 (g) CBr4 (g) → 2 CHBr3 (g) ΔrH°(0 K) = -2.00 ± 1.0 kcal/molRuscic G4
0.0496419.6 CHBr3 (g) CH3Br (g) → CBr4 (g) CH4 (g) ΔrH°(0 K) = 18.2 ± 2.5 kJ/molBross 2023
0.0496531.6 CH4 (g) CBr4 (g) → CH3Br (g) CHBr3 (g) ΔrH°(0 K) = -18.2 ± 2.5 kJ/molBross 2023
0.0476418.6 CHBr3 (g) HBr (g) → CBr4 (g) H2 (g) ΔrH°(0 K) = 91.9 ± 2.5 kJ/molBross 2023
0.0476414.6 CHBr3 (g) Br2 (g) → CBr4 (g) HBr (g) ΔrH°(0 K) = -7.7 ± 2.5 kJ/molBross 2023
0.0466533.3 CH2Br2 (g) CBr4 (g) → 2 CHBr3 (g) ΔrH°(0 K) = -2.21 ± 1.1 kcal/molRuscic G3X
0.0276532.3 CH3Br (g) CBr4 (g) → CH2Br2 (g) CHBr3 (g) ΔrH°(0 K) = -2.99 ± 1.1 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.