Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Formic acid

Formula: HC(O)OH (aq, undissoc)
CAS RN: 64-18-6
ATcT ID: 64-18-6*1000
SMILES: C(=O)O
InChI: InChI=1S/CH2O2/c2-1-3/h1H,(H,2,3)
InChIKey: BDAGIHXWWSANSR-UHFFFAOYSA-N
Hills Formula: C1H2O2

2D Image:

C(=O)O
Aliases: HC(O)OH; Formic acid; Hydrogen carboxylic acid; Methanoic acid; HCOOH; OCHOH; O=CH-OH; H(C=O)OH; Formylic acid; Aminic acid
Relative Molecular Mass: 46.0254 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-425.34± 0.45kJ/mol

Top contributors to the provenance of ΔfH° of HC(O)OH (aq, undissoc)

The 3 contributors listed below account for 93.0% of the provenance of ΔfH° of HC(O)OH (aq, undissoc).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
81.14766.1 HC(O)OH (cr,l) → HC(O)OH (aq, undissoc) ΔrH°(298.15 K) = -0.71 ± 0.40 kJ/molNBS Tables 1989, NBS TN270
7.04764.2 HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -60.807 ± 0.074 kcal/molLebedeva 1964
4.84764.1 HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -60.851 ± 0.089 kcal/molSinke 1959

Top 10 species with enthalpies of formation correlated to the ΔfH° of HC(O)OH (aq, undissoc)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Formic acidHC(O)OH (aq)C(=O)O-425.44± 0.45kJ/mol46.0254 ±
0.0010
64-18-6*800
99.9 Formate[HC(O)O]- (aq)C(=O)[O-]-425.44± 0.45kJ/mol45.0180 ±
0.0010
71-47-6*800
74.2 Formic acidHC(O)OH (aq, 5 H2O)C(=O)O-425.27± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*809
74.2 Formic acidHC(O)OH (aq, 4 H2O)C(=O)O-425.32± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*807
74.2 Formic acidHC(O)OH (aq, 3 H2O)C(=O)O-425.39± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*805
74.2 Formic acidHC(O)OH (aq, 2 H2O)C(=O)O-425.47± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*803
74.2 Formic acidHC(O)OH (aq, 1 H2O)C(=O)O-425.40± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*801
74.2 Formic acidHC(O)OH (aq, 0.5 H2O)C(=O)O-425.12± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*923
74.2 Formic acidHC(O)OH (aq, 100 H2O)C(=O)O-425.26± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*828
74.2 Formic acidHC(O)OH (aq, 6 H2O)C(=O)O-425.22± 0.60kJ/mol46.0254 ±
0.0010
64-18-6*811

Most Influential reactions involving HC(O)OH (aq, undissoc)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0004766.1 HC(O)OH (cr,l) → HC(O)OH (aq, undissoc) ΔrH°(298.15 K) = -0.71 ± 0.40 kJ/molNBS Tables 1989, NBS TN270
0.7314768.5 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.429 ± 0.010 kJ/molKinart 2019, 3rd Law, est unc
0.0814768.3 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.43 ± 0.03 kJ/molBell 1993, note unc2
0.0454768.14 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.417 ± 0.040 kJ/molHarned 1934, 3rd Law, est unc
0.0454768.17 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.416 ± 0.040 kJ/molRobinson 1959, 3rd Law, est unc
0.0294768.13 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -0.063 ± 0.050 kJ/molHarned 1934, 2nd Law, est unc
0.0294768.16 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -0.105 ± 0.050 kJ/molRobinson 1959, 2nd Law, est unc
0.0114768.12 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.350 ± 0.080 kJ/molPartanen 2005, 3rd Law, est unc
0.0074768.15 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.42 ± 0.10 kJ/molHarned 1930, 3rd Law, est unc
0.0074768.8 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.34 ± 0.10 kJ/molSaxton 1940, 3rd Law, est unc
0.0074768.10 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.326 ± 0.025 (×4.088) kJ/molSalomon 1986, 3rd Law, est unc
0.0034768.11 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = 0.035 ± 0.150 kJ/molPartanen 2005, 2nd Law, est unc
0.0004768.2 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -0.09 ± 0.30 kJ/molBell 1993, note unc2
0.0004768.1 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -0.12 ± 0.40 kJ/molNBS Tables 1989, NBS TN270
0.0004768.7 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrG°(298.15 K) = 21.89 ± 0.14 (×3.364) kJ/molBoncina 2010, 3rd Law
0.0004768.4 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -1.29 ± 0.50 (×2.43) kJ/molKinart 2019, 2nd Law, est unc
0.0004768.6 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -1.6 ± 0.5 (×3.018) kJ/molBoncina 2010, 2nd Law
0.0004768.9 HC(O)OH (aq, undissoc) → HC(O)OH (aq) ΔrH°(298.15 K) = -1.02 ± 2.13 kJ/molSalomon 1986, 2nd Law, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.