Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Carbon dioxide

Formula: CO2 (aq, undissoc)
CAS RN: 124-38-9
ATcT ID: 124-38-9*1000
SMILES: C(=O)=O
InChI: InChI=1S/CO2/c2-1-3
InChIKey: CURLTUGMZLYLDI-UHFFFAOYSA-N
Hills Formula: C1O2

2D Image:

C(=O)=O
Aliases: Carbon dioxide; Methanedione; Carbonic anhydride; Carbonic acid anhydride; Carbon oxide; R744; CO2; OCO; O=C=O; UN 1013; UN 1845; UN 2187
Relative Molecular Mass: 44.00950 ± 0.00100

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-412.868± 0.018kJ/mol

Top contributors to the provenance of ΔfH° of CO2 (aq, undissoc)

The 10 contributors listed below account for 90.5% of the provenance of ΔfH° of CO2 (aq, undissoc).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.83219.14 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.008 ± 0.003 kcal/molBerg 1978a
22.12228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
8.82228.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
8.82228.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
6.43219.12 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.009 ± 0.006 kcal/molHu 1972a, Berg 1978a, est unc
6.02228.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
4.02228.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
3.32228.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
3.12228.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
1.82228.1 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.560 ± 0.055 (×1.509) kJ/molProsen 1944, note CO2b
25.83219.14 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.008 ± 0.003 kcal/molBerg 1978a
22.12228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
8.82228.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
8.82228.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
6.43219.12 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.009 ± 0.006 kcal/molHu 1972a, Berg 1978a, est unc
6.02228.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
4.02228.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
3.32228.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
3.12228.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
1.82228.1 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.560 ± 0.055 (×1.509) kJ/molProsen 1944, note CO2b

Top 10 species with enthalpies of formation correlated to the ΔfH° of CO2 (aq, undissoc)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
79.9 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.477± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
79.9 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.477± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
79.0 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.089936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
79.0 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.089936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
59.9 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
59.9 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
46.6 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.32-384.74± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
46.6 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.32-384.74± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
40.2 Benzoic acidC6H5C(O)OH (g)c1ccc(cc1)C(=O)O-274.33-294.13± 0.19kJ/mol122.1213 ±
0.0056
65-85-0*0
40.2 Benzoic acidC6H5C(O)OH (g)c1ccc(cc1)C(=O)O-274.33-294.13± 0.19kJ/mol122.1213 ±
0.0056
65-85-0*0
35.6 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.49-940.21± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
35.6 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.49-940.21± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
30.7 BenzeneC6H6 (cr,l)c1ccccc150.7949.25± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
30.7 BenzeneC6H6 (cr,l)c1ccccc150.7949.25± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
30.7 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.59976.12± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
30.7 BenzeneC6H6 (g)c1ccccc1100.7083.19± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
30.7 BenzeneC6H6 (g)c1ccccc1100.7083.19± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
30.7 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.59976.12± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
29.4 Benzoyl chlorideC6H5C(O)Cl (cr,l)c1ccc(cc1)C(=O)Cl-157.10± 0.26kJ/mol140.5667 ±
0.0057
98-88-4*500
29.4 Benzoyl chlorideC6H5C(O)Cl (cr,l)c1ccc(cc1)C(=O)Cl-157.10± 0.26kJ/mol140.5667 ±
0.0057
98-88-4*500

Most Influential reactions involving CO2 (aq, undissoc)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003218.1 CO2 (aq, undissoc) H2O (cr,l) → C(O)(OH)2 (aq, undissoc) ΔrH°(298.15 K) = 0 ± 0 cm-1triv
0.7163219.14 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.008 ± 0.003 kcal/molBerg 1978a
0.1793219.12 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.009 ± 0.006 kcal/molHu 1972a, Berg 1978a, est unc
0.0453219.3 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 8.363 ± 0.05 kJ/molCarroll 1991, est unc
0.0453219.1 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 8.381 ± 0.05 kJ/molScharlin 1996, Carroll 1991, est unc
0.0053219.2 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -19.342 ± 0.15 kJ/molScharlin 1996, Carroll 1991, est unc
0.0053219.4 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -19.426 ± 0.15 kJ/molCarroll 1991, est unc
0.0003219.13 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -4.717 ± 0.040 (×2.089) kcal/molBerg 1978a
0.0003219.5 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -4.720 ± 0.050 (×1.719) kcal/molHu 1972a, Berg 1978a, est unc
0.0003219.6 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -4.720 ± 0.040 (×2.181) kcal/molBerg 1978a, CODATA Key Vals
0.0003219.8 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 8.38 ± 0.40 kJ/molNBS Tables 1989
0.0003219.7 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -19.67 ± 0.40 kJ/molGill 1982, Carroll 1991, est unc
0.0003219.9 CO2 (g) → CO2 (aq, undissoc) ΔrH°(298.15 K) = -20.29 ± 0.40 (×2.278) kJ/molNBS Tables 1989


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.