Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Benzophenone

Formula: C6H5C(O)C6H5 (cr,l)
CAS RN: 119-61-9
ATcT ID: 119-61-9*500
SMILES: c1ccccc1C(=O)c1ccccc1
SMILES: O=C(C=1C=CC=CC1)C=2C=CC=CC2
InChI: InChI=1S/C13H10O/c14-13(11-7-3-1-4-8-11)12-9-5-2-6-10-12/h1-10H
InChIKey: RWCCWEUUXYIKHB-UHFFFAOYSA-N
Hills Formula: C13H10O1

2D Image:

c1ccccc1C(=O)c1ccccc1
Aliases: C6H5C(O)C6H5; Benzophenone; Diphenylmethanone; Benzoylbenzene; Diphenyl ketone; Adjutan 6016; B 0083; BLS 531; BP; Daracure 1137; Darocur BP; Gencure BP; Hycure Benzophenone; Irgacure BP; JRCure 1020; Kayacure BP; Kayacure BP 100; Lowlite 24; NSC 8077; Omnirad BP; Phenyl ketone; Photoinitiator BP; PI BP; Runtecure 1020; SB-PI 710; Speedcure BP; Winure BP; alpha-Oxodiphenylmethane; alpha-Oxoditane; OC(C6H5)2; (C6H5)2CO
Relative Molecular Mass: 182.2179 ± 0.0104

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-16.7-41.9± 1.5kJ/mol

Top contributors to the provenance of ΔfH° of C6H5C(O)C6H5 (cr,l)

The 20 contributors listed below account only for 88.3% of the provenance of ΔfH° of C6H5C(O)C6H5 (cr,l).
A total of 24 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
55.69445.1 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -6502.56 ± 1.92 kJ/molVerevkin 1998, note unc2
3.89442.3 C6H5C(O)C6H5 (g) CH2O (g) → 2 C6H5C(O)H (g) ΔrH°(0 K) = -2.52 ± 0.90 kcal/molRuscic CBS-n
3.89442.1 C6H5C(O)C6H5 (g) CH2O (g) → 2 C6H5C(O)H (g) ΔrH°(0 K) = -3.18 ± 0.90 kcal/molRuscic G4
3.39444.3 C6H5C(O)C6H5 (g) HCO (g) → C6H5CO (g) C6H5C(O)H (g) ΔrH°(0 K) = 0.28 ± 0.90 kcal/molRuscic CBS-n
3.19445.2 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1555.96 ± 0.50 (×3.83) kcal/molColomina 1959
3.19442.2 C6H5C(O)C6H5 (g) CH2O (g) → 2 C6H5C(O)H (g) ΔrH°(0 K) = -3.20 ± 1.00 kcal/molRuscic CBS-n
2.79444.2 C6H5C(O)C6H5 (g) HCO (g) → C6H5CO (g) C6H5C(O)H (g) ΔrH°(0 K) = -0.76 ± 1.00 kcal/molRuscic CBS-n
2.09445.3 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1556.47 ± 0.78 (×3.084) kcal/molParks 1950a
1.59446.2 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(306 K) = 22.2 ± 0.2 kcal/molvan Ginkel 2001
1.57256.1 C6H5C(O)H (cr,l) + 8 O2 (g) → 7 CO2 (g) + 3 H2O (l) ΔrH°(298.15 K) = -3524.94 ± 1.97 kJ/molAmbrose 1975b
1.37321.1 CH3C6H4C(O)H (cr, l, ortho) + 19/2 O2 (g) → 8 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -4170.4 ± 2.1 kJ/molBilodeau 1999
1.19444.1 C6H5C(O)C6H5 (g) HCO (g) → C6H5CO (g) C6H5C(O)H (g) ΔrH°(0 K) = -2.12 ± 0.90 (×1.719) kcal/molRuscic G4
0.97291.1 C6H5C(O)CH3 (cr,l) + 19/2 O2 (g) → 8 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -4148.80 ± 0.89 (×3.292) kJ/molColomina 1961
0.57279.1 C6H5C(O)Cl (cr,l) → C6H5C(O)Cl (g) ΔrH°(298.15 K) = 55.5 ± 1.8 (×1.795) kJ/molThermoData 2004
0.57260.5 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.25 ± 0.85 kcal/molRuscic W1RO
0.57259.5 C6H5C(O)H (g) CH4 (g) → C6H5CH3 (g) CH2O (g) ΔrH°(0 K) = 12.45 ± 0.9 kcal/molRuscic W1RO
0.57258.5 C6H5C(O)H (g) CH4 (g) → C6H6 (g) CH3CHO (g) ΔrH°(0 K) = 7.06 ± 0.9 kcal/molRuscic W1RO
0.57260.4 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.58 ± 0.90 kcal/molRuscic CBS-n
0.57260.2 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.20 ± 0.90 kcal/molRuscic G4
0.57260.1 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.59 ± 0.90 kcal/molRuscic G3X
55.69445.1 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -6502.56 ± 1.92 kJ/molVerevkin 1998, note unc2
3.89442.3 C6H5C(O)C6H5 (g) CH2O (g) → 2 C6H5C(O)H (g) ΔrH°(0 K) = -2.52 ± 0.90 kcal/molRuscic CBS-n
3.89442.1 C6H5C(O)C6H5 (g) CH2O (g) → 2 C6H5C(O)H (g) ΔrH°(0 K) = -3.18 ± 0.90 kcal/molRuscic G4
3.39444.3 C6H5C(O)C6H5 (g) HCO (g) → C6H5CO (g) C6H5C(O)H (g) ΔrH°(0 K) = 0.28 ± 0.90 kcal/molRuscic CBS-n
3.19445.2 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1555.96 ± 0.50 (×3.83) kcal/molColomina 1959
3.19442.2 C6H5C(O)C6H5 (g) CH2O (g) → 2 C6H5C(O)H (g) ΔrH°(0 K) = -3.20 ± 1.00 kcal/molRuscic CBS-n
2.79444.2 C6H5C(O)C6H5 (g) HCO (g) → C6H5CO (g) C6H5C(O)H (g) ΔrH°(0 K) = -0.76 ± 1.00 kcal/molRuscic CBS-n
2.09445.3 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1556.47 ± 0.78 (×3.084) kcal/molParks 1950a
1.59446.2 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(306 K) = 22.2 ± 0.2 kcal/molvan Ginkel 2001
1.57256.1 C6H5C(O)H (cr,l) + 8 O2 (g) → 7 CO2 (g) + 3 H2O (l) ΔrH°(298.15 K) = -3524.94 ± 1.97 kJ/molAmbrose 1975b
1.37321.1 CH3C6H4C(O)H (cr, l, ortho) + 19/2 O2 (g) → 8 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -4170.4 ± 2.1 kJ/molBilodeau 1999
1.19444.1 C6H5C(O)C6H5 (g) HCO (g) → C6H5CO (g) C6H5C(O)H (g) ΔrH°(0 K) = -2.12 ± 0.90 (×1.719) kcal/molRuscic G4
0.97291.1 C6H5C(O)CH3 (cr,l) + 19/2 O2 (g) → 8 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -4148.80 ± 0.89 (×3.292) kJ/molColomina 1961
0.57279.1 C6H5C(O)Cl (cr,l) → C6H5C(O)Cl (g) ΔrH°(298.15 K) = 55.5 ± 1.8 (×1.795) kJ/molThermoData 2004
0.57260.5 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.25 ± 0.85 kcal/molRuscic W1RO
0.57259.5 C6H5C(O)H (g) CH4 (g) → C6H5CH3 (g) CH2O (g) ΔrH°(0 K) = 12.45 ± 0.9 kcal/molRuscic W1RO
0.57258.5 C6H5C(O)H (g) CH4 (g) → C6H6 (g) CH3CHO (g) ΔrH°(0 K) = 7.06 ± 0.9 kcal/molRuscic W1RO
0.57260.4 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.58 ± 0.90 kcal/molRuscic CBS-n
0.57260.2 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.20 ± 0.90 kcal/molRuscic G4
0.57260.1 C6H5C(O)H (g) CH3CH3 (g) → C6H5CH3 (g) CH3CHO (g) ΔrH°(0 K) = 1.59 ± 0.90 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5C(O)C6H5 (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 BenzophenoneC6H5C(O)C6H5 (cr)c1ccccc1C(=O)c1ccccc1-16.7-41.9± 1.5kJ/mol182.2179 ±
0.0104
119-61-9*510
100.0 BenzophenoneC6H5C(O)C6H5 (l)c1ccccc1C(=O)c1ccccc1-24.8± 1.5kJ/mol182.2179 ±
0.0104
119-61-9*590
100.0 BenzophenoneC6H5C(O)C6H5 (cr)c1ccccc1C(=O)c1ccccc1-16.7-41.9± 1.5kJ/mol182.2179 ±
0.0104
119-61-9*510
100.0 BenzophenoneC6H5C(O)C6H5 (l)c1ccccc1C(=O)c1ccccc1-24.8± 1.5kJ/mol182.2179 ±
0.0104
119-61-9*590
91.0 BenzophenoneC6H5C(O)C6H5 (g)c1ccccc1C(=O)c1ccccc180.751.5± 1.5kJ/mol182.2179 ±
0.0104
119-61-9*0
91.0 BenzophenoneC6H5C(O)C6H5 (g)c1ccccc1C(=O)c1ccccc180.751.5± 1.5kJ/mol182.2179 ±
0.0104
119-61-9*0
45.9 BenzaldehydeC6H5C(O)H (g)c1ccc(cc1)C=O-19.16-36.95± 0.68kJ/mol106.1219 ±
0.0056
100-52-7*0
45.9 BenzaldehydeC6H5C(O)H (g)c1ccc(cc1)C=O-19.16-36.95± 0.68kJ/mol106.1219 ±
0.0056
100-52-7*0
36.7 BenzoylC6H5CO (g)c1ccc(cc1)[C]=O138.85125.32± 0.98kJ/mol105.1140 ±
0.0056
2652-65-5*0
36.7 BenzoylC6H5CO (g)c1ccc(cc1)[C]=O138.85125.32± 0.98kJ/mol105.1140 ±
0.0056
2652-65-5*0
31.3 AcetophenoneC6H5C(O)CH3 (g)c1ccc(cc1)C(=O)C-60.71-83.90± 0.98kJ/mol120.1485 ±
0.0064
98-86-2*0
31.3 AcetophenoneC6H5C(O)CH3 (g)c1ccc(cc1)C(=O)C-60.71-83.90± 0.98kJ/mol120.1485 ±
0.0064
98-86-2*0
29.2 AcetophenoneC6H5C(O)CH3 (cr,l)c1ccc(cc1)C(=O)C-139.3± 1.1kJ/mol120.1485 ±
0.0064
98-86-2*500
29.2 AcetophenoneC6H5C(O)CH3 (cr,l)c1ccc(cc1)C(=O)C-139.3± 1.1kJ/mol120.1485 ±
0.0064
98-86-2*500
29.0 BenzaldehydeC6H5C(O)H (cr,l)c1ccc(cc1)C=O-85.59-86.66± 0.90kJ/mol106.1219 ±
0.0056
100-52-7*500
29.0 BenzaldehydeC6H5C(O)H (cr,l)c1ccc(cc1)C=O-85.59-86.66± 0.90kJ/mol106.1219 ±
0.0056
100-52-7*500
26.0 m-TolualdehydeCH3C6H4C(O)H (g, meta)Cc1cccc(c1)C=O-48.4-71.3± 1.2kJ/mol120.1485 ±
0.0064
620-23-5*0
26.0 m-TolualdehydeCH3C6H4C(O)H (g, meta)Cc1cccc(c1)C=O-48.4-71.3± 1.2kJ/mol120.1485 ±
0.0064
620-23-5*0
25.9 p-TolualdehydeCH3C6H4C(O)H (g, para)Cc1ccc(cc1)C=O-49.2-72.2± 1.2kJ/mol120.1485 ±
0.0064
104-87-0*0
25.9 p-TolualdehydeCH3C6H4C(O)H (g, para)Cc1ccc(cc1)C=O-49.2-72.2± 1.2kJ/mol120.1485 ±
0.0064
104-87-0*0

Most Influential reactions involving C6H5C(O)C6H5 (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0009448.1 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (cr) ΔrH°(298.15 K) = 0 ± 0 cm-1triv
0.5689445.1 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -6502.56 ± 1.92 kJ/molVerevkin 1998, note unc2
0.5629446.2 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(306 K) = 22.2 ± 0.2 kcal/molvan Ginkel 2001
0.0909446.4 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(321.03 K) = 94.7 ± 1 (×2.089) kJ/molde Kruif 1983
0.0909446.6 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(308.15 K) = 22.44 ± 0.5 kcal/molde Kruif 1977, est unc
0.0909446.5 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(304 K) = 22.7 ± 0.5 kcal/molColomina 1959, est unc
0.0819446.1 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(298.15 K) = 93.1 ± 2.2 kJ/molVerevkin 1998
0.0399446.3 C6H5C(O)C6H5 (cr,l) → C6H5C(O)C6H5 (g) ΔrH°(308 K) = 21.5 ± 0.5 (×1.509) kcal/molStephenson 1987, est unc, as quoted by NIST WebBook
0.0329445.2 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1555.96 ± 0.50 (×3.83) kcal/molColomina 1959
0.0209445.3 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1556.47 ± 0.78 (×3.084) kcal/molParks 1950a
0.0049445.5 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(291.15 K) = -1555 ± 5 kcal/molLandrieu 1924, est unc
0.0049445.4 C6H5C(O)C6H5 (cr,l) + 15 O2 (g) → 13 CO2 (g) + 5 H2O (cr,l) ΔrH°(291.15 K) = -1555.3 ± 5 kcal/molBurriel 1931, est unc, as quoted by NIST WebBook


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.