Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Platinum

Formula: Pt (g)
CAS RN: 7440-06-4
ATcT ID: 7440-06-4*0
SMILES: [Pt]
InChI: InChI=1S/Pt
InChIKey: BASFCYQUMIYNBI-UHFFFAOYSA-N
Hills Formula: Pt1

2D Image:

[Pt]
Aliases: Pt; Platinum
Relative Molecular Mass: 195.0780 ± 0.0020

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
563.4564.3± 1.7kJ/mol

3D Image of Pt (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of Pt (g)

The 4 contributors listed below account for 95.6% of the provenance of ΔfH° of Pt (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
63.110029.5 Pt (cr,l) → Pt (g) ΔrG°(1824 K) = 293.5 ± 2.1 kJ/molPlante 1970, 3rd Law
15.710029.4 Pt (cr,l) → Pt (g) ΔrG°(1994 K) = 269.6 ± 4.2 kJ/molHampson 1961, 3rd Law, est unc
8.910029.1 Pt (cr,l) → Pt (g) ΔrG°(2237 K) = 231.1 ± 5.0 (×1.114) kJ/molKoch 1969, 3rd Law, est unc
7.710029.2 Pt (cr,l) → Pt (g) ΔrG°(1726 K) = 308.6 ± 6.0 kJ/molDreger 1960, 3rd Law, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of Pt (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Platinum atom cationPt+ (g)[Pt+]1427.81428.3± 1.7kJ/mol195.0775 ±
0.0020
20561-56-2*0
100.0 Platinum atom anionPt- (g)[Pt-]358.4358.9± 1.7kJ/mol195.0785 ±
0.0020
40817-31-0*0
87.6 Platinum dimerPt2 (g)[Pt].[Pt]823.5822.5± 3.9kJ/mol390.1560 ±
0.0040
12596-95-1*0
85.9 Platinum dimer anion[Pt2]- (g)[Pt].[Pt-]640.3639.8± 3.9kJ/mol390.1565 ±
0.0040
153298-77-2*0
78.1 Platinum dimer cation[Pt2]+ (g)[Pt].[Pt+]1661.01659.6± 4.3kJ/mol390.1555 ±
0.0040
73146-08-4*0
45.0 Platinum hydridePtH (g)[Pt][H]451.6450.7± 3.8kJ/mol196.0859 ±
0.0020
13966-55-7*0
34.4 Platinum hydride cation[PtH]+ (g)[Pt+][H]1363.11382.3± 4.9kJ/mol196.0854 ±
0.0020
87882-39-1*0

Most Influential reactions involving Pt (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.99310031.1 Pt- (g) → Pt (g) ΔrH°(0 K) = 17140.1 ± 0.8 cm-1Bilodeau 1999, note unc
0.90210032.1 Pt2 (g) → 2 Pt (g) ΔrH°(0 K) = 3.14 ± 0.02 eVTaylor 1988
0.72010035.2 PtH (g) → Pt (g) H (g) ΔrH°(0 K) = 329.6 ± 3.9 kJ/molIrikura 2023
0.63110029.5 Pt (cr,l) → Pt (g) ΔrG°(1824 K) = 293.5 ± 2.1 kJ/molPlante 1970, 3rd Law
0.55810030.1 Pt (g) → Pt+ (g) ΔrH°(0 K) = 72257.8 ± 0.8 cm-1Jakubeh 2000
0.44110030.2 Pt (g) → Pt+ (g) ΔrH°(0 K) = 72256.6 ± 0.9 cm-1Marijnissen 1995
0.15710029.4 Pt (cr,l) → Pt (g) ΔrG°(1994 K) = 269.6 ± 4.2 kJ/molHampson 1961, 3rd Law, est unc
0.08910029.1 Pt (cr,l) → Pt (g) ΔrG°(2237 K) = 231.1 ± 5.0 (×1.114) kJ/molKoch 1969, 3rd Law, est unc
0.08710032.2 Pt2 (g) → 2 Pt (g) ΔrG°(2607 K) = 4.9 ± 6.2 kJ/molGupta 1981, 3rd Law
0.07710029.2 Pt (cr,l) → Pt (g) ΔrG°(1726 K) = 308.6 ± 6.0 kJ/molDreger 1960, 3rd Law, est unc
0.07610035.1 PtH (g) → Pt (g) H (g) ΔrH°(0 K) = 26926 ± 1000 cm-1Kaving 1971, est unc
0.04310029.3 Pt (cr,l) → Pt (g) ΔrG°(1910 K) = 281.9 ± 8.0 kJ/molJones 1927, Langmuir 1914, 3rd Law, est unc
0.02910035.4 PtH (g) → Pt (g) H (g) ΔrH°(0 K) = 3.38 ± 0.20 eVHuda 2006, est unc
0.02910035.3 PtH (g) → Pt (g) H (g) ΔrH°(0 K) = 3.31 ± 0.20 eVShen 2017, est unc
0.00510032.4 Pt2 (g) → 2 Pt (g) ΔrH°(0 K) = 3.37 ± 0.25 eVLee 2009a, est unc
0.00410031.2 Pt- (g) → Pt (g) ΔrH°(0 K) = 17141 ± 12 cm-1Thogersen 1996a, note unc
0.00210031.3 Pt- (g) → Pt (g) ΔrH°(0 K) = 17125 ± 18 cm-1Gibson 1993, note unc
0.00110032.5 Pt2 (g) → 2 Pt (g) ΔrH°(0 K) = 3.11 ± 0.5 eVAnton 2002, est unc
0.00110032.6 Pt2 (g) → 2 Pt (g) ΔrH°(0 K) = 3.17 ± 0.5 eVAnton 2002, est unc
0.00110032.7 Pt2 (g) → 2 Pt (g) ΔrH°(0 K) = 3.21 ± 0.5 eVAnton 2002, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.