Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Silicon carbide cation

Formula: [SiC]+ (g)
CAS RN: 78393-58-5
ATcT ID: 78393-58-5*0
SMILES: [Si][C+]
InChI: InChI=1S/CSi/c1-2/q+1
InChIKey: ONANOXGDHXUCRI-UHFFFAOYSA-N
Hills Formula: C1Si1+

2D Image:

[Si][C+]
Aliases: [SiC]+; Silicon carbide cation; Silicon carbide ion (1+); Methanetetraylsilicon cation; Methanetetraylsilicon ion (1+); SiC+
Relative Molecular Mass: 40.09565 ± 0.00085

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1604.81609.4± 2.4kJ/mol

3D Image of [SiC]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [SiC]+ (g)

The 13 contributors listed below account for 92.1% of the provenance of ΔfH° of [SiC]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
12.18704.4 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -106.37 ± 1.50 kcal/molRuscic W1RO
10.78704.2 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -104.82 ± 1.60 kcal/molRuscic G4
9.88701.4 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 99.75 ± 1.50 kcal/molRuscic W1RO
8.68701.2 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 100.97 ± 1.60 kcal/molRuscic G4
8.58701.7 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 4.32 ± 0.07 eVBorin 2005, est unc
7.58701.1 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 101.87 ± 1.72 kcal/molRuscic G3X
6.58701.6 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 4.30 ± 0.08 eVMartin 1990b
5.88704.3 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -105.91 ± 2.16 kcal/molRuscic CBS-n
5.08702.1 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.978 ± 0.010 eVGans 2023
5.08704.1 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -103.60 ± 1.72 (×1.354) kcal/molRuscic G3X
4.78701.3 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 100.69 ± 2.16 kcal/molRuscic CBS-n
3.88701.5 SiC (g) → Si (g) C (g) ΔrH°(0 K) = 426.5 ± 10 kJ/molDeng 2008, est unc
3.38715.1 SiC (cr, alpha-hex) → SiC (g) ΔrG°(2248 K) = 84.12 ± 2.6 kcal/molDrowart 1958, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of [SiC]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
92.8 Silicon carbideSiC (g)[Si]=[C]739.3744.3± 2.3kJ/mol40.09620 ±
0.00085
409-21-2*0
48.8 Silicon carbide anion[SiC]- (g)[Si][C-]508.8513.4± 4.3kJ/mol40.09675 ±
0.00085
86017-99-4*0
23.4 Silicon atom trication[Si]+3 (g)[Si+3]6045.586048.56± 0.56kJ/mol28.08385 ±
0.00030
14175-56-5*0
23.4 Silicon atom dication[Si]+2 (g)[Si++]2814.002816.98± 0.56kJ/mol28.08440 ±
0.00030
14175-55-4*0
23.4 Silicon cationSi+ (g)[Si+]1236.861240.99± 0.56kJ/mol28.08495 ±
0.00030
14067-07-3*0
23.4 Silicon anionSi- (g)[Si-]316.28319.26± 0.56kJ/mol28.08605 ±
0.00030
14337-02-1*0
23.4 SiliconSi (g)[Si]450.34454.68± 0.56kJ/mol28.08550 ±
0.00030
7440-21-3*0
23.4 Silicon atom tetracation[Si]+4 (g)[Si+4]10401.1010404.08± 0.56kJ/mol28.08331 ±
0.00030
22537-24-2*0
20.1 DisilaneSiH3SiH3 (g)[SiH3][SiH3]92.075.9± 1.3kJ/mol62.21864 ±
0.00073
1590-87-0*0
20.0 SilaneSiH4 (g)[SiH4]42.6633.04± 0.63kJ/mol32.11726 ±
0.00041
7803-62-5*0

Most Influential reactions involving [SiC]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8158702.1 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.978 ± 0.010 eVGans 2023
0.3738716.4 SiC (g) [Si2]+ (g) → [SiC]+ (g) Si2 (g) ΔrH°(0 K) = 1.033 ± 0.030 eVRuscic W1RO
0.1398716.2 SiC (g) [Si2]+ (g) → [SiC]+ (g) Si2 (g) ΔrH°(0 K) = 1.001 ± 0.049 eVRuscic G4
0.1298704.4 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -106.37 ± 1.50 kcal/molRuscic W1RO
0.1138704.2 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -104.82 ± 1.60 kcal/molRuscic G4
0.0878716.1 SiC (g) [Si2]+ (g) → [SiC]+ (g) Si2 (g) ΔrH°(0 K) = 1.015 ± 0.062 eVRuscic G3X
0.0628704.3 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -105.91 ± 2.16 kcal/molRuscic CBS-n
0.0538704.1 [SiC]+ (g) → Si (g) C (g) ΔrH°(0 K) = -103.60 ± 1.72 (×1.354) kcal/molRuscic G3X
0.0518702.5 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.938 ± 0.040 eVRuscic W1RO
0.0358716.3 SiC (g) [Si2]+ (g) → [SiC]+ (g) Si2 (g) ΔrH°(0 K) = 1.140 ± 0.066 (×1.477) eVRuscic CBS-n
0.0338716.5 SiC (g) [Si2]+ (g) → [SiC]+ (g) Si2 (g) ΔrH°(0 K) = 1.03 ± 0.10 eVBruna 1981, est unc
0.0158702.3 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.924 ± 0.073 eVRuscic G4
0.0098702.2 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.910 ± 0.093 eVRuscic G3X
0.0088702.4 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.959 ± 0.099 eVRuscic CBS-n
0.0038702.8 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.891 ± 0.150 eVGans 2023, est unc
0.0038702.7 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.94 ± 0.15 eVKetvirtis 1995, est unc
0.0008702.6 SiC (g) → [SiC]+ (g) ΔrH°(0 K) = 8.76 ± 0.30 eVPramanik 2008, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.