Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Hydrosulfide

Formula: [SH]- (g)
CAS RN: 15035-72-0
ATcT ID: 15035-72-0*0
SMILES: [SH-]
InChI: InChI=1S/H2S/h1H2/p-1
InChIKey: RWSOTUBLDIXVET-UHFFFAOYSA-M
InChI: InChI=1S/HS/h1H/q-1
InChIKey: FGBMUNIJSYYPKK-UHFFFAOYSA-N
Hills Formula: H1S1-

2D Image:

[SH-]
Aliases: [SH]-; Hydrosulfide; Hydrosulfide ion; Hydrosulfide anion; Hydrosulfide ion (1-); Bisulfide; Bisulfide ion; Bisulfide anion; Bisulfide ion (1-); Mercaptide; Mercaptide ion; Mercaptide anion; Mercaptide ion (1-); Sulfide anion; Sulfide ion (1-); Thiohydroxyl anion; Thiohydroxyl ion (1-); Sulfhydryl anion; Sulfhydryl ion (1-); Hydrogen monosulfide anion; Hydrogen monosulfide ion (1-); Monohydrogen sulfide anion; Monohydrogen sulfide ion (1-); Monohydrogen monosulfide anion; Monohydrogen monosulfide ion (1-); Hydrogen sulfide anion; Hydrogen sulfide ion (1-); Sulfur monohydride anion; Sulfur monohydride ion (1-); Sulfur hydride anion; Sulfur hydride ion (1-); Hydrosulfur anion; Hydrosulfur ion (1-)
Relative Molecular Mass: 33.0745 ± 0.0060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-80.52-80.52± 0.18kJ/mol

3D Image of [SH]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [SH]- (g)

The 20 contributors listed below account only for 86.4% of the provenance of ΔfH° of [SH]- (g).
A total of 24 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.89721.1 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l) ΔrH°(298.15 K) = -115042 ± 60 kcal/molKapustinskii 1958
13.99602.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
9.99727.1 SH (g) → H (g) S (g) ΔrH°(0 K) = 29245 ± 25 cm-1Zhou 2005
7.49749.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
5.59749.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/molMansson 1963, CODATA Key Vals
3.09595.10 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.40 ± 0.25 kcal/molKarton 2006, Karton 2011
3.09595.11 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.51 ± 0.25 kcal/molFeller 2008
2.39587.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.874) kcal/molDrowart 1968, Detry 1967, 3rd Law
2.29788.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/molMcCullough 1957a
2.29723.1 H2S (g) + 3/2 O2 (g) → OSO (g) H2O (cr,l) ΔrH°(298.15 K) = -134.24 ± 0.16 kcal/molKapustinskii 1958
2.09622.1 SO (g) → S (g) O (g) ΔrH°(0 K) = 43275 ± 5 cm-1Clerbaux 1994
1.89589.4 S2 (g) + 2 H2 (g) → 2 H2S (g) ΔrG°(1515 K) = -31.42 ± 0.80 (×1.719) kJ/molRandall 1918, Gurvich TPIS, 2nd Law
1.79587.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 (×1.044) kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
1.59748.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.477) kcal/molMcCullough 1953, CODATA Key Vals
1.29728.12 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.69 ± 0.20 kcal/molFeller 2008
1.29704.13 H2S (g) → 2 H (g) S (g) ΔrH°(0 K) = 173.54 ± 0.20 kcal/molFeller 2008, McNeill 2022
1.19595.9 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.57 ± 0.40 kcal/molKarton 2011
1.09749.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.278) kcal/molWaddington 1956, Mansson 1963, est unc
0.99747.1 OSO (g) + 1/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (cr,l) ΔrH°(298.15 K) = -231.329 ± 0.040 kJ/molNBS Tables 1989
0.99722.1 H2S (g) + 1/2 O2 (g) → S (cr,l) H2O (cr,l) ΔrH°(298.15 K) = -63.66 ± 0.42 kcal/molKapustinskii 1958

Top 10 species with enthalpies of formation correlated to the ΔfH° of [SH]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 SulfanylSH (g)[SH]142.81143.27± 0.18kJ/mol33.0739 ±
0.0060
13940-21-1*0
99.3 Hydrogen sulfideH2S (g)S-17.36-20.29± 0.18kJ/mol34.0819 ±
0.0060
7783-06-4*0
98.9 Sulfoniumyl[H2S]+ (g)[SH2+]992.67989.76± 0.18kJ/mol34.0813 ±
0.0060
26453-60-1*0
98.0 Sulfanylium[SH]+ (g)[SH+]1148.361148.36± 0.19kJ/mol33.0734 ±
0.0060
12273-42-6*0
63.8 Monosulfur anionS- (g)[S-]76.4378.48± 0.14kJ/mol32.0665 ±
0.0060
14337-03-2*0
63.8 SulfurS (g)[S]276.84279.08± 0.14kJ/mol32.0660 ±
0.0060
7704-34-9*0
63.7 Monosulfur cationS+ (g)[S+]1276.421278.21± 0.14kJ/mol32.0655 ±
0.0060
14701-12-3*0
63.6 DisulfurS2 (g)S=S127.38127.69± 0.27kJ/mol64.1320 ±
0.0120
23550-45-0*0
62.6 Sulfur atom dication[S]+2 (g)[S++]3528.193531.88± 0.14kJ/mol32.0649 ±
0.0060
14127-58-3*0
61.4 Sulfur monoxideSO (g)S=O5.966.00± 0.13kJ/mol48.0654 ±
0.0060
13827-32-2*0

Most Influential reactions involving [SH]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0009730.1 [SH]- (g) → SH (g) ΔrH°(0 K) = 18669.543 ± 0.012 cm-1Chaibi 2006
0.6809734.2 H2S (g) → H+ (g) [SH]- (g) ΔrH°(0 K) = 122458 ± 2 cm-1Kreis 2022
0.3029734.1 H2S (g) → H+ (g) [SH]- (g) ΔrH°(0 K) = 122458 ± 3 cm-1Shiell 2000a
0.0019739.1 S- (g) H2 (g) → [SH]- (g) H (g) ΔrH°(0 K) = 59.0 ± 4.3 kJ/molRempala 2000
0.0009732.8 [SH]- (g) → H (g) S (g) ΔrH°(0 K) = 136.8 ± 1.2 kcal/molMcNeill 2022
0.0009734.3 H2S (g) → H+ (g) [SH]- (g) ΔrH°(0 K) = 350.1 ± 1.2 kcal/molMcNeill 2022
0.0009730.3 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.3148 ± 0.0004 eVKitsopoulos 1989, Shiell 2000a
0.0009730.2 [SH]- (g) → SH (g) ΔrH°(0 K) = 18666.4 ± 4 cm-1Larson 1988, est unc, Chaibi 2006
0.0009730.4 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.317 ± 0.002 (×1.139) eVBreyer 1981
0.0009730.6 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.314 ± 0.003 eVJanousek 1981
0.0009730.5 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.319 ± 0.010 eVSteiner 1968
0.0009730.14 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.309 ± 0.035 eVParthiban 2001
0.0009730.13 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.324 ± 0.050 eVRuscic W1RO, Parthiban 2001
0.0009730.10 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.268 ± 0.061 eVRuscic G4
0.0009730.9 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.305 ± 0.085 eVRuscic G3X
0.0009730.12 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.350 ± 0.092 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.