Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Methyl hydroperoxide

Formula: CH3OOH (g)
CAS RN: 3031-73-0
ATcT ID: 3031-73-0*0
SMILES: COO
InChI: InChI=1S/CH4O2/c1-3-2/h2H,1H3
InChIKey: MEUKEBNAABNAEX-UHFFFAOYSA-N
Hills Formula: C1H4O2

2D Image:

COO
Aliases: CH3OOH; Methyl hydroperoxide; Methane hydroperoxide; Methyl hydrogen peroxide
Relative Molecular Mass: 48.0413 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-114.82-127.64± 0.42kJ/mol

3D Image of CH3OOH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3OOH (g)

The 20 contributors listed below account only for 56.6% of the provenance of ΔfH° of CH3OOH (g).
A total of 130 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
17.24541.9 CH3OOH (g) → C (g) + 4 H (g) + 2 O (g) ΔrH°(0 K) = 2184.34 ± 1. kJ/molWelch 2019, Welch 2018
4.24544.1 CH4 (g) + 2 H2O (g) → CH3OOH (g) + 2 H2 (g) ΔrH°(0 K) = 429.68 ± 2.00 kJ/molKlippenstein 2017
4.04545.10 CH3OOH (g) H2O (g) → CH3OH (g) HOOH (g) ΔrH°(0 K) = 34.25 ± 2.00 kJ/molKlippenstein 2017
3.64545.9 CH3OOH (g) H2O (g) → CH3OH (g) HOOH (g) ΔrH°(0 K) = 8.0 ± 0.5 kcal/molMatthews 2005, est unc
2.54643.6 CH3OO (g) → CH3 (g) O2 (g) ΔrH°(0 K) = 30.40 ± 0.17 kcal/molNguyen 2014a
2.24636.10 CH3OOH (g) → CH3OO (g) H (g) ΔrH°(0 K) = 353.47 ± 2.0 kJ/molKlippenstein 2017
2.24636.9 CH3OOH (g) → CH3OO (g) H (g) ΔrH°(0 K) = 353.60 ± 2. kJ/molWelch 2019, Welch 2018
2.24637.9 CH3OO (g) HOOH (g) → CH3OOH (g) HOO (g) ΔrH°(0 K) = 6.76 ± 2.0 kJ/molKlippenstein 2017
2.24639.6 CH3OO (g) HOO (g) → CH3OOH (g) O2 (g, triplet) ΔrH°(0 K) = -152.74 ± 2.0 kJ/molKlippenstein 2017
2.14645.6 CH3OOH (g) → [CH3OO]- (g) H+ (g) ΔrH°(0 K) = 1553.64 ± 2 kJ/molWelch 2019, Welch 2018
2.04639.1 CH3OO (g) HOO (g) → CH3OOH (g) O2 (g, triplet) ΔrH°(0 K) = -36.14 ± 0.5 kcal/molNguyen 2022
1.94547.6 CH3OOH (g) → CH3 (g) HOO (g) ΔrH°(0 K) = 66.9 ± 0.7 kcal/molFarago 2015, est unc
1.63151.6 HC(O)OOH (g, cis) CH4 (g) → CH3OOH (g) CH2O (g) ΔrH°(0 K) = 125.37 ± 2.0 kJ/molKlippenstein 2017
1.53150.6 HC(O)OOH (g, cis) CH3OH (g) → HC(O)OH (g, syn) CH3OOH (g) ΔrH°(0 K) = -16.39 ± 2.0 kJ/molKlippenstein 2017
1.44634.9 [CH3OO]- (g) → C (g) + 3 H (g) + 2 O (g) ΔrH°(0 K) = 1942.76 ± 1. kJ/molWelch 2019, Welch 2018
1.34630.9 CH3OO (g) → C (g) + 3 H (g) + 2 O (g) ΔrH°(0 K) = 1830.74 ± 1. kJ/molWelch 2019, Welch 2018
1.14545.8 CH3OOH (g) H2O (g) → CH3OH (g) HOOH (g) ΔrH°(0 K) = 8.13 ± 0.9 kcal/molRuscic W1RO
1.04683.6 CH3CH2OO (g, gauche) CH3OOH (g) → CH3CH2OOH (g) CH3OO (g) ΔrH°(0 K) = 0.81 ± 1.50 kJ/molWelch 2019, Welch 2018
0.94545.4 CH3OOH (g) H2O (g) → CH3OH (g) HOOH (g) ΔrH°(0 K) = 8.40 ± 1.0 kcal/molRuscic G4
0.94545.7 CH3OOH (g) H2O (g) → CH3OH (g) HOOH (g) ΔrH°(0 K) = 8.41 ± 1.0 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3OOH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
66.1 Hydroxymethyleneoxonium[CH2OOH]+ (g)C=[O+]O792.97782.83± 0.62kJ/mol47.0328 ±
0.0010
77144-12-8*0
35.3 MethylperoxyCH3OO (g)CO[O]22.5613.11± 0.34kJ/mol47.0333 ±
0.0010
2143-58-0*0
27.9 Methylperoxy anion[CH3OO]- (g)CO[O-]-89.66-99.81± 0.45kJ/mol47.0339 ±
0.0010
35683-44-4*0
27.6 Ethyl hydroperoxideCH3CH2OOH (g)CCOO-142.47-160.89± 0.62kJ/mol62.0678 ±
0.0018
3031-74-1*0
25.7 Peroxyformic acidHC(O)OOH (g)C(=O)OO-279.20-288.33± 0.63kJ/mol62.0248 ±
0.0012
107-32-4*0
25.7 Peroxyformic acidHC(O)OOH (g, cis)C(=O)OO-279.20-288.55± 0.63kJ/mol62.0248 ±
0.0012
107-32-4*1
23.9 HydroperoxymethylCH2OOH (g)[CH2]OO73.2665.96± 0.97kJ/mol47.0333 ±
0.0010
74087-87-9*0
15.8 Methyl hydroperoxide cation[CH3OOH]+ (g)C[O+]O833.8819.7± 2.0kJ/mol48.0407 ±
0.0010
112465-88-0*0
15.1 Phenyl hydroperoxideC6H5OOH (g)c1ccc(cc1)OO13.8-5.2± 2.1kJ/mol110.1106 ±
0.0049
36112-26-2*0
13.0 Vinyl hydroperoxideCH2CHOOH (g, perp-syn)C=COO-26.04-38.32± 0.69kJ/mol60.0520 ±
0.0017
66998-78-5*1

Most Influential reactions involving CH3OOH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9314653.1 CH3OOH (g) → [CH2OOH]+ (g) H (g) ΔrH°(0 K) = 11.647 ± 0.005 eVCovert 2018
0.2554542.5 CH3OOH (g) → [CH3OOH]+ (g) ΔrH°(0 K) = 9.821 ± 0.040 eVRuscic W1RO
0.1768622.5 C6H5OOH (g) CH3OO (g) → C6H5OO (g) CH3OOH (g) ΔrH°(0 K) = 0.83 ± 0.85 kcal/molRuscic W1RO
0.1734541.9 CH3OOH (g) → C (g) + 4 H (g) + 2 O (g) ΔrH°(0 K) = 2184.34 ± 1. kJ/molWelch 2019, Welch 2018
0.1634542.1 CH3OOH (g) → [CH3OOH]+ (g) ΔrH°(0 K) = 9.87 ± 0.05 eVLi 2005, est unc
0.1634542.6 CH3OOH (g) → [CH3OOH]+ (g) ΔrH°(0 K) = 9.84 ± 0.05 eVCovert 2018, est unc
0.1578622.1 C6H5OOH (g) CH3OO (g) → C6H5OO (g) CH3OOH (g) ΔrH°(0 K) = 1.15 ± 0.90 kcal/molRuscic G3X
0.1578622.4 C6H5OOH (g) CH3OO (g) → C6H5OO (g) CH3OOH (g) ΔrH°(0 K) = 0.51 ± 0.90 kcal/molRuscic CBS-n
0.1578622.2 C6H5OOH (g) CH3OO (g) → C6H5OO (g) CH3OOH (g) ΔrH°(0 K) = -0.09 ± 0.90 kcal/molRuscic G4
0.1414683.6 CH3CH2OO (g, gauche) CH3OOH (g) → CH3CH2OOH (g) CH3OO (g) ΔrH°(0 K) = 0.81 ± 1.50 kJ/molWelch 2019, Welch 2018
0.1278622.3 C6H5OOH (g) CH3OO (g) → C6H5OO (g) CH3OOH (g) ΔrH°(0 K) = 1.17 ± 1.0 kcal/molRuscic CBS-n
0.1124690.6 [CH3CH2OO]- (g, gauche) CH3OOH (g) → CH3CH2OOH (g) [CH3OO]- (g) ΔrH°(0 K) = 1.48 ± 2.0 kJ/molWelch 2019, Welch 2018
0.1103150.6 HC(O)OOH (g, cis) CH3OH (g) → HC(O)OH (g, syn) CH3OOH (g) ΔrH°(0 K) = -16.39 ± 2.0 kJ/molKlippenstein 2017
0.1093151.6 HC(O)OOH (g, cis) CH4 (g) → CH3OOH (g) CH2O (g) ΔrH°(0 K) = 125.37 ± 2.0 kJ/molKlippenstein 2017
0.0794683.7 CH3CH2OO (g, gauche) CH3OOH (g) → CH3CH2OOH (g) CH3OO (g) ΔrH°(0 K) = 2.34 ± 2.00 kJ/molKlippenstein 2017
0.0764542.3 CH3OOH (g) → [CH3OOH]+ (g) ΔrH°(0 K) = 9.799 ± 0.073 eVRuscic G4
0.0734652.5 CH2OOH (g) CH3OH (g) → CH3OOH (g) CH2OH (g) ΔrH°(0 K) = -1.65 ± 0.85 kcal/molRuscic W1RO
0.0674645.6 CH3OOH (g) → [CH3OO]- (g) H+ (g) ΔrH°(0 K) = 1553.64 ± 2 kJ/molWelch 2019, Welch 2018
0.0654652.1 CH2OOH (g) CH3OH (g) → CH3OOH (g) CH2OH (g) ΔrH°(0 K) = -1.71 ± 0.90 kcal/molRuscic G3X
0.0654652.2 CH2OOH (g) CH3OH (g) → CH3OOH (g) CH2OH (g) ΔrH°(0 K) = -1.44 ± 0.90 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.