Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Sulfinyl hydride

Formula: H2SO (g)
CAS RN: 25540-60-7
ATcT ID: 25540-60-7*0
SMILES: O=[SH2]
InChI: InChI=1S/H2OS/c1-2/h2H2
InChIKey: CQBIFASRYMRWLF-UHFFFAOYSA-N
Hills Formula: H2O1S1

2D Image:

O=[SH2]
Aliases: H2SO; Sulfinyl hydride; Oxo-lambda4-sulfane; SH2O; OSH2
Relative Molecular Mass: 50.0813 ± 0.0060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-40.7-47.6± 1.2kJ/mol

3D Image of H2SO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of H2SO (g)

The 16 contributors listed below account for 90.9% of the provenance of ΔfH° of H2SO (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.39713.5 H2SO (g) → S (g) O (g) + 2 H (g) ΔrH°(0 K) = 238.53 ± 0.50 kcal/molDenis 2008a, est unc
12.19714.5 H2SO (g) → HSOH (g) ΔrH°(0 K) = -15.93 ± 0.50 kcal/molDenis 2008a, est unc
8.410010.4 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 21.02 ± 0.85 kcal/molRuscic W1RO
7.510010.1 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 21.54 ± 0.90 kcal/molRuscic G3X
7.510010.2 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 21.10 ± 0.90 kcal/molRuscic G4
6.110010.3 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 20.73 ± 1.00 kcal/molRuscic CBS-n
3.39710.5 HSOH (g) → S (g) O (g) + 2 H (g) ΔrH°(0 K) = 254.46 ± 0.50 kcal/molDenis 2008a, est unc
3.19715.4 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 64.22 ± 1.50 kcal/molRuscic W1RO
2.79715.2 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 63.40 ± 1.60 kcal/molRuscic G4
2.39715.1 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 63.48 ± 1.72 kcal/molRuscic G3X
2.19714.4 H2SO (g) → HSOH (g) ΔrH°(0 K) = -16.48 ± 1.2 kcal/molRuscic W1RO
1.79714.2 H2SO (g) → HSOH (g) ΔrH°(0 K) = -17.02 ± 1.3 kcal/molRuscic G4
1.59714.1 H2SO (g) → HSOH (g) ΔrH°(0 K) = -16.94 ± 1.4 kcal/molRuscic G3X
1.49715.3 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 64.16 ± 2.16 kcal/molRuscic CBS-n
1.19714.3 H2SO (g) → HSOH (g) ΔrH°(0 K) = -16.03 ± 1.6 kcal/molRuscic CBS-n
1.110008.1 CH3SCH3 (cr,l) + 1/2 O2 (g) → CH3S(O)CH3 (l) ΔrH°(291.15 K) = -33.26 ± 0.10 kcal/molDouglas 1946

Top 10 species with enthalpies of formation correlated to the ΔfH° of H2SO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
37.3 Sulfenic acidHSOH (g)OS-108.0-114.2± 1.1kJ/mol50.0813 ±
0.0060
62607-44-7*0
16.1 Hydrogen oxide sulfideH2OS (g)[OH2]=S51.145.1± 1.4kJ/mol50.0813 ±
0.0060
155348-09-7*0
13.7 DimethylsulfoxideCH3S(O)CH3 (g)CS(=O)C-131.91-150.55± 0.57kJ/mol78.1344 ±
0.0062
67-68-5*0
11.9 Hydrogen sulfideH2S (g)S-17.36-20.29± 0.18kJ/mol34.0819 ±
0.0060
7783-06-4*0
11.9 SulfanylSH (g)[SH]142.81143.27± 0.18kJ/mol33.0739 ±
0.0060
13940-21-1*0
11.9 Hydrosulfide[SH]- (g)[SH-]-80.52-80.52± 0.18kJ/mol33.0745 ±
0.0060
15035-72-0*0
11.9 Sulfoniumyl[H2S]+ (g)[SH2+]992.67989.76± 0.18kJ/mol34.0813 ±
0.0060
26453-60-1*0
11.6 Sulfanylium[SH]+ (g)[SH+]1148.361148.36± 0.19kJ/mol33.0734 ±
0.0060
12273-42-6*0
10.9 DimethylsulfoxideCH3S(O)CH3 (cr,l)CS(=O)C-201.92-203.58± 0.49kJ/mol78.1344 ±
0.0062
67-68-5*500
10.9 DimethylsulfoxideCH3S(O)CH3 (l)CS(=O)C-203.58± 0.49kJ/mol78.1344 ±
0.0062
67-68-5*590

Most Influential reactions involving H2SO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3459714.5 H2SO (g) → HSOH (g) ΔrH°(0 K) = -15.93 ± 0.50 kcal/molDenis 2008a, est unc
0.2879713.5 H2SO (g) → S (g) O (g) + 2 H (g) ΔrH°(0 K) = 238.53 ± 0.50 kcal/molDenis 2008a, est unc
0.10510010.4 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 21.02 ± 0.85 kcal/molRuscic W1RO
0.09410010.1 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 21.54 ± 0.90 kcal/molRuscic G3X
0.09410010.2 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 21.10 ± 0.90 kcal/molRuscic G4
0.07610010.3 CH3S(O)CH3 (g) H2S (g) → CH3SCH3 (g) H2SO (g) ΔrH°(0 K) = 20.73 ± 1.00 kcal/molRuscic CBS-n
0.0599714.4 H2SO (g) → HSOH (g) ΔrH°(0 K) = -16.48 ± 1.2 kcal/molRuscic W1RO
0.0519714.2 H2SO (g) → HSOH (g) ΔrH°(0 K) = -17.02 ± 1.3 kcal/molRuscic G4
0.0449714.1 H2SO (g) → HSOH (g) ΔrH°(0 K) = -16.94 ± 1.4 kcal/molRuscic G3X
0.0339714.3 H2SO (g) → HSOH (g) ΔrH°(0 K) = -16.03 ± 1.6 kcal/molRuscic CBS-n
0.0319715.4 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 64.22 ± 1.50 kcal/molRuscic W1RO
0.0289715.2 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 63.40 ± 1.60 kcal/molRuscic G4
0.0249715.1 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 63.48 ± 1.72 kcal/molRuscic G3X
0.0159715.3 H2SO (g) → H2S (g) O (g) ΔrH°(0 K) = 64.16 ± 2.16 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.