Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
n-Propyl |
Formula: CH3CH2CH2 (g) |
CAS RN: 2143-61-5 |
ATcT ID: 2143-61-5*0 |
SMILES: CC[CH2] |
InChI: InChI=1S/C3H7/c1-3-2/h1,3H2,2H3 |
InChIKey: OCBFFGCSTGGPSQ-UHFFFAOYSA-N |
Hills Formula: C3H7 |
2D Image: |
|
Aliases: CH3CH2CH2; Propyl; Propyl radical; 1-Propyl; 1-Propyl radical; n-Propyl; n-Propyl radical; n-Pr; n-C3H7; CH2CH2CH3 |
Relative Molecular Mass: 43.0877 ± 0.0024 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
118.44 | 101.04 | ± 0.39 | kJ/mol |
|
3D Image of CH3CH2CH2 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3CH2CH2 (g)The 20 contributors listed below account only for 34.8% of the provenance of ΔfH° of CH3CH2CH2 (g). A total of 343 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 3.3 | 3263.1 | 3 CH4 (g) → CH3CH2CH2 (g) + 5/2 H2 (g)  | ΔrH°(0 K) = 317.84 ± 2.0 kJ/mol | Klippenstein 2017 | 2.9 | 3267.9 | CH3CH2CH3 (g) → CH3CH2CH2 (g) + H (g)  | ΔrH°(0 K) = 417.52 ± 2.0 kJ/mol | Klippenstein 2017 | 2.6 | 3269.9 | CH3CH2CH2 (g) + CH2CH2 (g) → CH3CHCH2 (g) + CH3CH2 (g)  | ΔrH°(0 K) = -12.57 ± 2.0 kJ/mol | Klippenstein 2017 | 2.6 | 3268.9 | CH3CH2CH2 (g) + CH3CH3 (g) → CH3CH2CH3 (g) + CH3CH2 (g)  | ΔrH°(0 K) = -1.25 ± 2.0 kJ/mol | Klippenstein 2017 | 2.2 | 4150.6 | CH3CH2OH (g) + CH3CH2CH2 (g) → CH2CH2OH (g, gauche-syn) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 3.83 ± 2.00 kJ/mol | Klippenstein 2017 | 2.0 | 3266.5 | CH3CH2CH2 (g) → CH3 (g) + CH2CH2 (g)  | ΔrG°(550 K) = 30.7 ± 2.5 kJ/mol | Lin 1966, Tsang 1985, est unc | 2.0 | 3266.2 | CH3CH2CH2 (g) → CH3 (g) + CH2CH2 (g)  | ΔrG°(600 K) = 22.1 ± 2.5 kJ/mol | Kerr 1959, Tsang 1985, est unc | 2.0 | 3266.7 | CH3CH2CH2 (g) → CH3 (g) + CH2CH2 (g)  | ΔrG°(600 K) = 21.1 ± 2.5 kJ/mol | Back 1961, Tsang 1985, est unc | 2.0 | 3266.4 | CH3CH2CH2 (g) → CH3 (g) + CH2CH2 (g)  | ΔrG°(500 K) = 35.5 ± 2.5 kJ/mol | Kerr 1961, Tsang 1985, est unc | 1.8 | 3286.1 | CH3CH2CH2 (g) → CH3CHCH3 (g)  | ΔrG°(545 K) = -11.9 ± 2 kJ/mol | Seetula 1997, Seakins 1992, 3rd Law, est unc | 1.8 | 3281.10 | CH3CHCH3 (g) → CH3CH2CH2 (g)  | ΔrH°(0 K) = 13.07 ± 2.0 kJ/mol | Klippenstein 2017 | 1.3 | 3286.2 | CH3CH2CH2 (g) → CH3CHCH3 (g)  | ΔrH°(545 K) = -15.8 ± 2 (×1.164) kJ/mol | Seetula 1997, Seakins 1992, 2nd Law, est unc | 1.0 | 3354.4 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, singlet Cs TS)  | ΔrH°(0 K) = 9.45 ± 0.85 kcal/mol | Ruscic W1RO | 1.0 | 2375.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 0.9 | 3711.9 | CH3CH2CH2CH2 (g) + CH3CH2CH3 (g) → CH3CH2CH2 (g) + CH3CH2CH2CH3 (g)  | ΔrH°(0 K) = -0.17 ± 2.00 kJ/mol | Klippenstein 2017 | 0.9 | 3354.1 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, singlet Cs TS)  | ΔrH°(0 K) = 9.70 ± 0.90 kcal/mol | Ruscic G3X | 0.9 | 3710.1 | CH3CH2CH2CH2 (g) + CH3CH2CH3 (g) → CH3CH2CH2 (g) + CH3CH2CH2CH3 (g)  | ΔrG°(525 K) = -0.1 ± 2 (×1.022) kJ/mol | Seetula 1997, 3rd Law, est unc | 0.8 | 5005.5 | CH3CH2CH2CH2OH (g) → [CH2OH]+ (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = 11.224 ± 0.040 eV | Ruscic W1RO | 0.8 | 3269.8 | CH3CH2CH2 (g) + CH2CH2 (g) → CH3CHCH2 (g) + CH3CH2 (g)  | ΔrH°(0 K) = -3.11 ± 0.85 kcal/mol | Ruscic W1RO | 0.8 | 3268.8 | CH3CH2CH2 (g) + CH3CH3 (g) → CH3CH2CH3 (g) + CH3CH2 (g)  | ΔrH°(0 K) = -0.35 ± 0.85 kcal/mol | Ruscic W1RO |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2CH2 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 33.4 | 1,3-Propanediyl | CH2CH2CH2 (g, triplet C2) | | 320.3 | 308.4 | ± 1.5 | kJ/mol | 42.0797 ± 0.0024 | 32458-33-6*12 | 30.6 | n-Butyl | CH3CH2CH2CH2 (g) | | 103.08 | 80.57 | ± 0.60 | kJ/mol | 57.1143 ± 0.0033 | 2492-36-6*0 | 29.8 | iso-Propyl | CH3CHCH3 (g) | | 105.66 | 88.78 | ± 0.38 | kJ/mol | 43.0877 ± 0.0024 | 2025-55-0*0 | 29.0 | Propane | CH3CH2CH3 (g) | | -82.73 | -105.01 | ± 0.15 | kJ/mol | 44.0956 ± 0.0025 | 74-98-6*0 | 25.6 | 1,3-Propanediyl | CH2CH2CH2 (g, singlet Cs TS) | | 358.7 | 343.7 | ± 1.4 | kJ/mol | 42.0797 ± 0.0024 | 32458-33-6*22 | 25.5 | n-Propylium | [CH3CH2CH2]+ (g) | | 857.14 | 838.86 | ± 0.76 | kJ/mol | 43.0871 ± 0.0024 | 19252-52-9*0 | 22.1 | Ethyl | CH3CH2 (g) | | 131.50 | 120.75 | ± 0.20 | kJ/mol | 29.0611 ± 0.0016 | 2025-56-1*0 | 21.7 | Propene | CH3CHCH2 (g) | | 34.89 | 20.06 | ± 0.18 | kJ/mol | 42.0797 ± 0.0024 | 115-07-1*0 | 21.7 | Propylene cation | [CH3CHCH2]+ (g) | | 975.18 | 961.65 | ± 0.18 | kJ/mol | 42.0792 ± 0.0024 | 34504-10-4*0 | 20.9 | n-Butane | CH3CH2CH2CH3 (g) | | -98.25 | -125.56 | ± 0.18 | kJ/mol | 58.1222 ± 0.0033 | 106-97-8*0 |
|
Most Influential reactions involving CH3CH2CH2 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.262 | 3714.5 | CH3CH2CH2CH2 (g) + [CH3CH2CH2]+ (g) → [CH3CH2CH2CH2]+ (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -0.149 ± 0.020 eV | Ruscic W1RO | 0.157 | 3354.4 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, singlet Cs TS)  | ΔrH°(0 K) = 9.45 ± 0.85 kcal/mol | Ruscic W1RO | 0.151 | 3356.5 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, triplet C2)  | ΔrH°(0 K) = 0.00 ± 0.85 kcal/mol | Ruscic W1RO | 0.142 | 3730.6 | CH3CH2CHCH3 (g) + CH3CH2CH2 (g) → CH3CH2CH2CH2 (g) + CH3CHCH3 (g)  | ΔrH°(0 K) = -0.84 ± 2.00 kJ/mol | Klippenstein 2017 | 0.140 | 3354.1 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, singlet Cs TS)  | ΔrH°(0 K) = 9.70 ± 0.90 kcal/mol | Ruscic G3X | 0.138 | 9817.4 | CH3SCH2 (g) + CH3CH2CH3 (g) → CH3SCH3 (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = 7.65 ± 0.85 kcal/mol | Ruscic W1RO | 0.135 | 3356.1 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, triplet C2)  | ΔrH°(0 K) = 0.00 ± 0.90 kcal/mol | Ruscic G3X | 0.135 | 3356.4 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, triplet C2)  | ΔrH°(0 K) = 0.00 ± 0.90 kcal/mol | Ruscic CBS-n | 0.128 | 3454.5 | CH2CH2CH (g, quartet) + CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -0.71 ± 0.85 kcal/mol | Ruscic W1RO | 0.123 | 9817.1 | CH3SCH2 (g) + CH3CH2CH3 (g) → CH3SCH3 (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = 7.21 ± 0.90 kcal/mol | Ruscic G3X | 0.123 | 9817.2 | CH3SCH2 (g) + CH3CH2CH3 (g) → CH3SCH3 (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = 7.19 ± 0.90 kcal/mol | Ruscic G4 | 0.115 | 3454.4 | CH2CH2CH (g, quartet) + CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -0.61 ± 0.90 kcal/mol | Ruscic CBS-n | 0.115 | 3454.2 | CH2CH2CH (g, quartet) + CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -1.77 ± 0.90 kcal/mol | Ruscic G4 | 0.115 | 3454.1 | CH2CH2CH (g, quartet) + CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -0.65 ± 0.90 kcal/mol | Ruscic G3X | 0.109 | 3356.3 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, triplet C2)  | ΔrH°(0 K) = 0.00 ± 1.00 kcal/mol | Ruscic CBS-n | 0.108 | 3356.2 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, triplet C2)  | ΔrH°(0 K) = 1.16 ± 0.90 (×1.114) kcal/mol | Ruscic G4 | 0.102 | 3948.5 | (CH3)3CCH2 (g) + CH3CH2CH3 (g) → C(CH3)4 (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -0.66 ± 0.9 kcal/mol | Ruscic W1RO | 0.099 | 9817.3 | CH3SCH2 (g) + CH3CH2CH3 (g) → CH3SCH3 (g) + CH3CH2CH2 (g)  | ΔrH°(0 K) = 7.47 ± 1.00 kcal/mol | Ruscic CBS-n | 0.095 | 3354.2 | 2 CH3CH2CH2 (g) → CH3CH2CH3 (g) + CH2CH2CH2 (g, singlet Cs TS)  | ΔrH°(0 K) = 10.42 ± 0.90 (×1.215) kcal/mol | Ruscic G4 | 0.093 | 3454.3 | CH2CH2CH (g, quartet) + CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) + CH3CH2CH2 (g)  | ΔrH°(0 K) = -0.65 ± 1.0 kcal/mol | Ruscic CBS-n |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|