Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Chloroform

Formula: CHCl3 (g)
CAS RN: 67-66-3
ATcT ID: 67-66-3*0
SMILES: C(Cl)(Cl)Cl
InChI: InChI=1S/CHCl3/c2-1(3)4/h1H
InChIKey: HEDRZPFGACZZDS-UHFFFAOYSA-N
Hills Formula: C1H1Cl3

2D Image:

C(Cl)(Cl)Cl
Aliases: CHCl3; Chloroform; Trichloromethane; Methane trichloride; Carbon trichloride; Methyl trichloride; Methenyl trichloride; Trichlorocarbon; CCl3H; UN 1888; RCRA U044; R 20; Halocarbon 20; Freon 20; FC 20; CFC 20; HCC 20; Genetron 20
Relative Molecular Mass: 119.3767 ± 0.0028

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-94.54-99.44± 0.39kJ/mol

3D Image of CHCl3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CHCl3 (g)

The 20 contributors listed below account only for 61.2% of the provenance of ΔfH° of CHCl3 (g).
A total of 167 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
11.56473.6 CH2Cl2 (g) CCl4 (g) → 2 CHCl3 (g) ΔrH°(0 K) = -3.11 ± 0.25 kcal/molKarton 2017
7.06356.5 CHCl3 (g) + 2 H (g) → CH3Cl (g) + 2 Cl (g) ΔrH°(0 K) = -41.52 ± 0.30 kcal/molKarton 2017
6.96353.8 CHCl3 (g) → C (g) + 3 Cl (g) H (g) ΔrH°(0 K) = 329.79 ± 0.35 kcal/molKarton 2017
4.96472.6 CH3Cl (g) CCl4 (g) → CH2Cl2 (g) CHCl3 (g) ΔrH°(0 K) = -4.27 ± 0.25 kcal/molKarton 2017
3.96005.6 CCl4 (g) + 4 F (g) → CF4 (g) + 4 Cl (g) ΔrH°(0 K) = -160.16 ± 0.30 kcal/molKarton 2017
3.76756.8 CO2 (g) CCl4 (g) → 2 CCl2O (g) ΔrH°(0 K) = 11.18 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
3.36398.6 CH2Cl2 (g) Cl (g) → CHCl3 (g) H (g) ΔrH°(0 K) = 21.34 ± 0.30 kcal/molKarton 2017
2.96471.6 CH4 (g) CCl4 (g) → CH3Cl (g) CHCl3 (g) ΔrH°(0 K) = -3.24 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
2.86469.7 CH4 (g) CHCl3 (g) → CH2Cl2 (g) CH3Cl (g) ΔrH°(0 K) = -0.13 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
2.46001.9 CCl4 (g) → C (g) + 4 Cl (g) ΔrH°(0 K) = 305.34 ± 0.35 (×1.139) kcal/molKarton 2017
2.06278.6 CH3Cl (g) + 3 Cl (g) → CCl4 (g) + 3 H (g) ΔrH°(0 K) = 65.97 ± 0.30 (×1.139) kcal/molKarton 2017
1.86003.6 CCl4 (g) + 4 H (g) → CH4 (g) + 4 Cl (g) ΔrH°(0 K) = -87.18 ± 0.30 (×1.509) kcal/molKarton 2017, Karton 2011, Karton 2006
1.36358.2 CHCl3 (l) + 1/2 O2 (g) H2O (cr,l) → CO2 (g) + 3 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -113.10 ± 0.8 kcal/molHu 1969, est unc
1.16395.7 CH2Cl2 (g) → C (g) + 2 H (g) + 2 Cl (g) ΔrH°(0 K) = 351.13 ± 0.35 kcal/molKarton 2017
1.06355.5 CHCl3 (g) Cl (g) → CCl4 (g) H (g) ΔrH°(0 K) = 24.45 ± 0.30 kcal/molKarton 2017
0.96018.1 CCl3 (g) Br2 (g) → CCl3Br (g) Br (g) ΔrG°(437 K) = -3.5 ± 0.5 kcal/molHudgens 1991, 3rd Law
0.86473.5 CH2Cl2 (g) CCl4 (g) → 2 CHCl3 (g) ΔrH°(0 K) = -3.14 ± 0.9 kcal/molRuscic W1RO
0.76290.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 (×2.828) eVSong 2001
0.76473.4 CH2Cl2 (g) CCl4 (g) → 2 CHCl3 (g) ΔrH°(0 K) = -2.26 ± 1.0 kcal/molRuscic G4
0.76397.7 CH2Cl2 (g) H (g) → CH3Cl (g) Cl (g) ΔrH°(0 K) = -20.18 ± 0.30 kcal/molKarton 2017

Top 10 species with enthalpies of formation correlated to the ΔfH° of CHCl3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
92.4 ChloroformCHCl3 (l)C(Cl)(Cl)Cl-130.84± 0.42kJ/mol119.3767 ±
0.0028
67-66-3*590
67.8 BromotrichloromethaneCCl3Br (g)ClC(Cl)(Cl)Br-29.82-38.97± 0.53kJ/mol198.2728 ±
0.0030
75-62-7*0
64.4 TetrachloromethaneCCl4 (g)ClC(Cl)(Cl)Cl-89.30-91.47± 0.41kJ/mol153.8215 ±
0.0037
56-23-5*0
64.1 TetrachloromethaneCCl4 (l)ClC(Cl)(Cl)Cl-104.57-123.98± 0.41kJ/mol153.8215 ±
0.0037
56-23-5*500
48.5 DichloromethaneCH2Cl2 (g)C(Cl)Cl-86.86-93.72± 0.33kJ/mol84.9320 ±
0.0020
75-09-2*0
44.2 DichloromethaneCH2Cl2 (l)C(Cl)Cl-122.72± 0.37kJ/mol84.9320 ±
0.0020
75-09-2*590
32.5 ChloromethaneCH3Cl (g)CCl-74.67-82.60± 0.17kJ/mol50.4872 ±
0.0012
74-87-3*0
32.2 Chloromethane cation[CH3Cl]+ (g)C[Cl+]1014.611007.84± 0.17kJ/mol50.4867 ±
0.0012
12538-71-5*0
31.9 ChloromethaneCH3Cl (l)CCl-106.46-102.50± 0.17kJ/mol50.4872 ±
0.0012
74-87-3*590
30.6 BromodichloromethaneCHCl2Br (g)C(Cl)(Cl)Br-34.8-46.5± 1.2kJ/mol163.8280 ±
0.0022
75-27-4*0

Most Influential reactions involving CHCl3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9966357.1 CHCl3 (l) → CHCl3 (g) ΔrH°(298.15 K) = 31.40 ± 0.16 kJ/molMajer 1985
0.9116457.1 CHCl2Br (g) Cl (g) → CHCl3 (g) Br (g) ΔrH°(0 K) = -0.642 ± 0.012 eVShuman 2008a
0.8026368.1 Br2 (g) CHCl3 (g) → HBr (g) CCl3Br (g) ΔrH°(298.15 K) = -1.41 ± 0.10 kcal/molMendenhall 1973, as quoted by Pedley 1986
0.3206473.6 CH2Cl2 (g) CCl4 (g) → 2 CHCl3 (g) ΔrH°(0 K) = -3.11 ± 0.25 kcal/molKarton 2017
0.2596019.5 CHCl3 (g) → [CCl3]- (g) H+ (g) ΔrH°(0 K) = 358.67 ± 0.90 kcal/molRuscic W1RO
0.1946472.6 CH3Cl (g) CCl4 (g) → CH2Cl2 (g) CHCl3 (g) ΔrH°(0 K) = -4.27 ± 0.25 kcal/molKarton 2017
0.1406469.7 CH4 (g) CHCl3 (g) → CH2Cl2 (g) CH3Cl (g) ΔrH°(0 K) = -0.13 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
0.1236471.6 CH4 (g) CCl4 (g) → CH3Cl (g) CHCl3 (g) ΔrH°(0 K) = -3.24 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
0.0866356.5 CHCl3 (g) + 2 H (g) → CH3Cl (g) + 2 Cl (g) ΔrH°(0 K) = -41.52 ± 0.30 kcal/molKarton 2017
0.0856398.6 CH2Cl2 (g) Cl (g) → CHCl3 (g) H (g) ΔrH°(0 K) = 21.34 ± 0.30 kcal/molKarton 2017
0.0716355.5 CHCl3 (g) Cl (g) → CCl4 (g) H (g) ΔrH°(0 K) = 24.45 ± 0.30 kcal/molKarton 2017
0.0706353.8 CHCl3 (g) → C (g) + 3 Cl (g) H (g) ΔrH°(0 K) = 329.79 ± 0.35 kcal/molKarton 2017
0.0526019.3 CHCl3 (g) → [CCl3]- (g) H+ (g) ΔrH°(0 K) = 359.61 ± 2.00 kcal/molRuscic G4
0.0396019.4 CHCl3 (g) → [CCl3]- (g) H+ (g) ΔrH°(0 K) = 357.44 ± 2.30 kcal/molRuscic CBS-n
0.0376442.3 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 294.56 ± 5.3 kJ/molCsontos 2010
0.0356019.2 CHCl3 (g) → [CCl3]- (g) H+ (g) ΔrH°(0 K) = 358.62 ± 2.42 kcal/molRuscic G3X
0.0356442.2 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 70.36 ± 1.3 kcal/molRuscic G4
0.0346451.3 CHFCl2 (g) Cl (g) → CHCl3 (g) F (g) ΔrH°(0 K) = 34.09 ± 1.2 kcal/molRuscic W1RO
0.0306451.4 CHFCl2 (g) Cl (g) → CHCl3 (g) F (g) ΔrH°(0 K) = 139.40 ± 5.3 kJ/molCsontos 2010
0.0306442.1 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 70.47 ± 1.4 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.