Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Hexafluorobenzene anion

Formula: [C6F6]- (g)
CAS RN: 37551-90-9
ATcT ID: 37551-90-9*0
SMILES: Fc1c(F)c(F)c(F)c(F)c1[F-]
InChI: InChI=1S/C6F6/c7-1-2(8)4(10)6(12)5(11)3(1)9/q-1
InChIKey: XURLBMJAXFYKCC-UHFFFAOYSA-N
Hills Formula: C6F6-

2D Image:

Fc1c(F)c(F)c(F)c(F)c1[F-]
Aliases: [C6F6]-; Hexafluorobenzene anion; Hexafluorobenzene ion (1-); 1,2,3,4,5,6-Hexafluorocyclohexa-3,5-dien-2-id-1-yl; 1,2,3,4,5,6-Hexafluorobenzene anion; 1,2,3,4,5,6-Hexafluorobenzene ion (1-); Perfluorobenzene anion; Perfluorobenzene ion (1-); C6F6-
Relative Molecular Mass: 186.0552 ± 0.0048

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-992.7-995.0± 3.5kJ/mol

3D Image of [C6F6]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6F6]- (g)

The 9 contributors listed below account for 92.7% of the provenance of ΔfH° of [C6F6]- (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.87290.7 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.470 ± 0.085 eVRuscic G3X
14.17290.11 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.500 ± 0.090 eVRuscic CBS-n
13.57290.10 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.520 ± 0.092 eVRuscic CBS-n
11.47290.8 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.454 ± 0.100 eVMiller 2004
11.37294.2 [C6F6]- (g) OSO (g) → C6F6 (g) [OSO]- (g) ΔrG°(423 K) = -11.3 ± 2.3 kcal/molChowdhury 1986a
9.57294.1 [C6F6]- (g) OSO (g) → C6F6 (g) [OSO]- (g) ΔrG°(423 K) = -11.2 ± 2.5 kcal/molDillow 1989
8.47290.9 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.636 ± 0.061 (×1.915) eVRuscic G4
5.47297.1 999 C6F6 (cr,l) + 999 O2 (g) → 999 CO2 (g) + 999 CF4 (g) + 834 F2 (g) ΔrH°(298.15 K) = -469109 ± 200 kcal/molKrech 1972
2.87290.6 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.477 ± 0.20 eVChristophorou 1995, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6F6]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
24.9 HexafluorobenzeneC6F6 (g)Fc1c(F)c(F)c(F)c(F)c1F-942.57-947.57± 0.87kJ/mol186.0546 ±
0.0048
392-56-3*0
24.8 Hexafluorobenzene cation[C6F6]+ (g)Fc1c(F)c(F)c(F)c(F)c1[F+]13.689.89± 0.87kJ/mol186.0541 ±
0.0048
34528-23-9*0
24.7 HexafluorobenzeneC6F6 (cr,l)Fc1c(F)c(F)c(F)c(F)c1F-997.17-983.38± 0.87kJ/mol186.0546 ±
0.0048
392-56-3*500
9.3 FluorobenzeneC6H5F (g)c1ccc(cc1)F-96.05-111.73± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*0
9.2 Fluorobenzene cation[C6H5F]+ (g)c1ccc(cc1)[F+]791.92776.90± 0.39kJ/mol96.1018 ±
0.0048
34468-25-2*0
9.2 FluorobenzeneC6H5F (cr,l)c1ccc(cc1)F-148.77-146.36± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*500
6.9 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.65-933.62± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0
5.7 PolytetrafluoroethyleneCF2CF2 (s)FC(C(F)(F)[*:1])(F)[*:2]-829.96± 0.54kJ/mol100.0150 ±
0.0016
9002-84-0*591
4.6 Sulfur dioxide anion[OSO]- (g)O=[S-]=O-401.27-403.53± 0.73kJ/mol64.0653 ±
0.0060
12143-17-8*0
2.2 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.478± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0

Most Influential reactions involving [C6F6]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1697290.7 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.470 ± 0.085 eVRuscic G3X
0.1517290.11 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.500 ± 0.090 eVRuscic CBS-n
0.1447290.10 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.520 ± 0.092 eVRuscic CBS-n
0.1267294.2 [C6F6]- (g) OSO (g) → C6F6 (g) [OSO]- (g) ΔrG°(423 K) = -11.3 ± 2.3 kcal/molChowdhury 1986a
0.1227290.8 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.454 ± 0.100 eVMiller 2004
0.1067294.1 [C6F6]- (g) OSO (g) → C6F6 (g) [OSO]- (g) ΔrG°(423 K) = -11.2 ± 2.5 kcal/molDillow 1989
0.0897290.9 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.636 ± 0.061 (×1.915) eVRuscic G4
0.0307290.6 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.477 ± 0.20 eVChristophorou 1995, est unc
0.0297290.2 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.72 ± 0.20 (×1.022) eVEustis 2007, est unc
0.0157290.3 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.80 ± 0.20 (×1.414) eVNakajima 1993, est unc
0.0127290.4 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.83 ± 0.20 (×1.576) eVChen 1994c
0.0107290.5 [C6F6]- (g) → C6F6 (g) ΔrH°(0 K) = 0.86 ± 0.20 (×1.719) eVChen 1994c, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.