Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Sulfur tetraoxide |
Formula: OS(O)(O)O (g, singlet Td) |
CAS RN: 12772-98-4 |
ATcT ID: 12772-98-4*22 |
SMILES: [O]S(=O)(=O)[O] |
InChI: InChI=1S/O4S/c1-5(2,3)4 |
InChIKey: DRQBAJRMFBIZMF-UHFFFAOYSA-N |
Hills Formula: O4S1 |
2D Image: |
|
Aliases: OS(O)(O)O; Sulfur tetraoxide; Sulfur peroxide; Sulfur tetroxide; SO4; 2082745-60-4 |
Relative Molecular Mass: 96.0636 ± 0.0061 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-163.6 | -169.5 | ± 2.9 | kJ/mol |
|
3D Image of OS(O)(O)O (g, singlet Td) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of OS(O)(O)O (g, singlet Td)The 20 contributors listed below account only for 89.7% of the provenance of ΔfH° of OS(O)(O)O (g, singlet Td). A total of 21 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 30.4 | 9740.3 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 7927 ± 350 cm-1 | Ruscic CBS-n | 16.7 | 9740.4 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 8169 ± 300 (×1.576) cm-1 | Ruscic W1RO | 11.0 | 9742.4 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3646 ± 420 cm-1 | Ruscic W1RO | 6.2 | 9742.3 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3414 ± 560 cm-1 | Ruscic CBS-n | 2.3 | 9740.2 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 6561 ± 310 (×4.088) cm-1 | Ruscic G4 | 2.2 | 9724.4 | OS(OO)O (g, singlet C2v) + OSO (g) → 2 OS(O)O (g)  | ΔrH°(0 K) = -54.57 ± 0.85 kcal/mol | Ruscic W1RO | 2.1 | 9742.2 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 2520 ± 450 (×2.134) cm-1 | Ruscic G4 | 2.0 | 9724.1 | OS(OO)O (g, singlet C2v) + OSO (g) → 2 OS(O)O (g)  | ΔrH°(0 K) = -53.89 ± 0.90 kcal/mol | Ruscic G3X | 1.7 | 9742.1 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 2443 ± 490 (×2.134) cm-1 | Ruscic G3X | 1.6 | 9724.3 | OS(OO)O (g, singlet C2v) + OSO (g) → 2 OS(O)O (g)  | ΔrH°(0 K) = -54.43 ± 1.00 kcal/mol | Ruscic CBS-n | 1.6 | 9741.4 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1978 ± 300 cm-1 | Ruscic W1RO | 1.5 | 9740.1 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 6272 ± 315 (×4.967) cm-1 | Ruscic G3X | 1.5 | 9741.2 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1825 ± 310 cm-1 | Ruscic G4 | 1.4 | 9741.1 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1674 ± 315 cm-1 | Ruscic G3X | 1.4 | 9744.4 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -15.84 ± 1.50 kcal/mol | Ruscic W1RO | 1.2 | 9724.2 | OS(OO)O (g, singlet C2v) + OSO (g) → 2 OS(O)O (g)  | ΔrH°(0 K) = -53.42 ± 0.90 (×1.269) kcal/mol | Ruscic G4 | 1.2 | 9744.2 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -15.19 ± 1.60 kcal/mol | Ruscic G4 | 1.1 | 9741.3 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 2165 ± 350 cm-1 | Ruscic CBS-n | 1.0 | 9744.1 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -15.87 ± 1.72 kcal/mol | Ruscic G3X | 0.7 | 9725.4 | OS(OO)O (g, singlet C2v) → OSO (g) + O2 (g)  | ΔrH°(0 K) = -8.56 ± 1.50 kcal/mol | Ruscic W1RO |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of OS(O)(O)O (g, singlet Td) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Sulfur tetraoxide | OS(O)(O)O (g, singlet) | | -163.6 | -169.4 | ± 2.9 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*2 | 72.6 | Sulfur tetraoxide | OS(O)(O)O (g, singlet C3v ?) | | -155.4 | -164.3 | ± 4.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*23 | 48.1 | Sulfur tetraoxide | OS(O)(O)O (g, triplet Td) | | -205.1 | -211.3 | ± 2.6 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*12 | 40.6 | 3,3-Dioxidedioxathiirane | OS(OO)O (g, singlet C2v) | | -257.1 | -265.2 | ± 1.4 | kJ/mol | 96.0636 ± 0.0061 | 1177730-84-5*2 | 40.6 | 3,3-Dioxidedioxathiirane | OS(OO)O (g) | | -257.1 | -265.2 | ± 1.4 | kJ/mol | 96.0636 ± 0.0061 | 1177730-84-5*0 | 38.4 | Sulfur tetraoxide | OS(O)(O)O (g, triplet) | | -228.2 | -235.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*1 | 38.4 | Sulfur tetraoxide | OS(O)(O)O (g) | | -228.2 | -235.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*0 | 38.4 | Sulfur tetraoxide | OS(O)(O)O (g, triplet D2d) | | -228.2 | -235.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*11 | 19.7 | Dioxoperoxysulfane | (O2S)(OO) (g, triplet C1) | | -296.1 | -296.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | *103613-08-7*21 | 18.3 | Dioxoperoxysulfane | (O2S)(OO) (g, singlet C1) | | -176.7 | -177.7 | ± 2.1 | kJ/mol | 96.0636 ± 0.0061 | *103613-08-7*11 |
|
Most Influential reactions involving OS(O)(O)O (g, singlet Td)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 9738.1 | OS(O)(O)O (g, singlet) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 0 ± 0 cm-1 | Ruscic W1RO, Ruscic G4, Ruscic CBS-n | 0.576 | 9743.4 | OS(O)(O)O (g, singlet Td) → OS(O)(O)O (g, singlet C3v ?)  | ΔrH°(0 K) = 514 ± 300 cm-1 | Ruscic W1RO | 0.423 | 9743.3 | OS(O)(O)O (g, singlet Td) → OS(O)(O)O (g, singlet C3v ?)  | ΔrH°(0 K) = 925 ± 350 cm-1 | Ruscic CBS-n | 0.397 | 9740.3 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 7927 ± 350 cm-1 | Ruscic CBS-n | 0.302 | 9742.4 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3646 ± 420 cm-1 | Ruscic W1RO | 0.217 | 9740.4 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 8169 ± 300 (×1.576) cm-1 | Ruscic W1RO | 0.169 | 9742.3 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3414 ± 560 cm-1 | Ruscic CBS-n | 0.057 | 9742.2 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 2520 ± 450 (×2.134) cm-1 | Ruscic G4 | 0.048 | 9742.1 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 2443 ± 490 (×2.134) cm-1 | Ruscic G3X | 0.030 | 9740.2 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 6561 ± 310 (×4.088) cm-1 | Ruscic G4 | 0.019 | 9740.1 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 6272 ± 315 (×4.967) cm-1 | Ruscic G3X |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|