Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Dioxoperoxysulfane

Formula: (O2S)(OO) (g, triplet C1)
CAS RN: *103613-08-7
ATcT ID: *103613-08-7*21
SMILES: O=[S](=O)[O+][O-]
InChI: InChI=1S/O4S/c1-4-5(2)3
InChIKey: COYWASWWCWIMMU-UHFFFAOYSA-N
SMILES: O=S=O.O=O
InChI: InChI=1S/O2S.O2/c1-3-2;1-2
InChIKey: TUGPRDMCVSZQEX-UHFFFAOYSA-N
Hills Formula: O4S1

2D Image:

O=[S](=O)[O+][O-]
Aliases: (O2S)(OO); Dioxoperoxysulfane; 2-(Dioxo-lambda6-sulfanylidene)dioxidan-2-ium-1-ide; Dioxoperoxysulfur; (O2S)(O2); (SO2)(O2); OS(O)OO; SO4
Relative Molecular Mass: 96.0636 ± 0.0061

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-296.1-296.1± 2.0kJ/mol

Top contributors to the provenance of ΔfH° of (O2S)(OO) (g, triplet C1)

The 20 contributors listed below account only for 78.9% of the provenance of ΔfH° of (O2S)(OO) (g, triplet C1).
A total of 35 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
10.19756.4 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.43 ± 1.50 kcal/molRuscic W1RO
8.89756.2 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = -0.08 ± 1.60 kcal/molRuscic G4
7.69756.1 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.87 ± 1.72 kcal/molRuscic G3X
5.59758.4 (O2S)(OO) (g, triplet Cs ?) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.19 ± 1.50 kcal/molRuscic W1RO
5.29755.4 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 16.27 ± 1.2 kcal/molRuscic W1RO
4.89756.3 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.84 ± 2.16 kcal/molRuscic CBS-n
4.49755.2 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 15.11 ± 1.3 kcal/molRuscic G4
4.29759.4 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 29.01 ± 1.2 kcal/molRuscic W1RO
3.89755.1 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 16.73 ± 1.4 kcal/molRuscic G3X
3.59759.2 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 27.61 ± 1.3 kcal/molRuscic G4
3.09759.1 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 28.68 ± 1.4 kcal/molRuscic G3X
2.99755.3 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 17.51 ± 1.6 kcal/molRuscic CBS-n
2.69758.3 (O2S)(OO) (g, triplet Cs ?) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.84 ± 2.16 kcal/molRuscic CBS-n
2.39759.3 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 28.24 ± 1.6 kcal/molRuscic CBS-n
2.09757.4 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, triplet Cs ?) ΔrH°(0 K) = 0.24 ± 0.85 kcal/molRuscic W1RO
1.89744.4 OS(O)(O)O (g, triplet D2d) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = -15.84 ± 1.50 kcal/molRuscic W1RO
1.69744.2 OS(O)(O)O (g, triplet D2d) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = -15.19 ± 1.60 kcal/molRuscic G4
1.49757.3 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, triplet Cs ?) ΔrH°(0 K) = 0.00 ± 1.00 kcal/molRuscic CBS-n
1.39744.1 OS(O)(O)O (g, triplet D2d) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = -15.87 ± 1.72 kcal/molRuscic G3X
1.09753.4 [OS(O)OO]- (g, C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 3.376 ± 0.050 eVRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of (O2S)(OO) (g, triplet C1)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
55.3 Dioxoperoxysulfane(O2S)(OO) (g, triplet Cs ?)O=[S](=O)[O+][O-]-295.8-295.5± 2.7kJ/mol96.0636 ±
0.0061
*103613-08-7*22
48.1 Dioxoperoxysulfane(O2S)(OO) (g, singlet C1)O=[S](=O)[O+][O-]-176.7-177.7± 2.1kJ/mol96.0636 ±
0.0061
*103613-08-7*11
43.8 Sulfur tetraoxideOS(O)(O)O (g, triplet D2d)[O]S(=O)(=O)[O]-228.2-235.1± 2.0kJ/mol96.0636 ±
0.0061
12772-98-4*11
43.8 Sulfur tetraoxideOS(O)(O)O (g)[O]S(=O)(=O)[O]-228.2-235.1± 2.0kJ/mol96.0636 ±
0.0061
12772-98-4*0
43.8 Sulfur tetraoxideOS(O)(O)O (g, triplet)[O]S(=O)(=O)[O]-228.2-235.1± 2.0kJ/mol96.0636 ±
0.0061
12772-98-4*1
33.2 Dioxoperoxysulfane(O2S)(OO) (g, singlet Cs ?)O=[S](=O)[O+][O-]-177.1-177.5± 3.5kJ/mol96.0636 ±
0.0061
*103613-08-7*12
31.6 Sulfur tetraoxideOS(O)(O)O (g, triplet Td)[O]S(=O)(=O)[O]-205.1-211.3± 2.6kJ/mol96.0636 ±
0.0061
12772-98-4*12
27.9 3,3-DioxidedioxathiiraneOS(OO)O (g, singlet C2v)O=S1(=O)OO1-257.1-265.2± 1.4kJ/mol96.0636 ±
0.0061
1177730-84-5*2
27.9 3,3-DioxidedioxathiiraneOS(OO)O (g)O=S1(=O)OO1-257.1-265.2± 1.4kJ/mol96.0636 ±
0.0061
1177730-84-5*0
24.5 Dioxoperoxysulfate dianion[OS(O)OO]-2 (g, C1)[O-]S(=O)O[O-]-209.1-214.8± 2.1kJ/mol96.0647 ±
0.0061
*14808-79-8*1

Most Influential reactions involving (O2S)(OO) (g, triplet C1)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4199757.4 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, triplet Cs ?) ΔrH°(0 K) = 0.24 ± 0.85 kcal/molRuscic W1RO
0.3039757.3 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, triplet Cs ?) ΔrH°(0 K) = 0.00 ± 1.00 kcal/molRuscic CBS-n
0.1749755.4 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 16.27 ± 1.2 kcal/molRuscic W1RO
0.1669759.4 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 29.01 ± 1.2 kcal/molRuscic W1RO
0.1489755.2 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 15.11 ± 1.3 kcal/molRuscic G4
0.1419759.2 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 27.61 ± 1.3 kcal/molRuscic G4
0.1289755.1 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 16.73 ± 1.4 kcal/molRuscic G3X
0.1229759.1 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 28.68 ± 1.4 kcal/molRuscic G3X
0.1019756.4 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.43 ± 1.50 kcal/molRuscic W1RO
0.0989755.3 (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d) ΔrH°(0 K) = 17.51 ± 1.6 kcal/molRuscic CBS-n
0.0939759.3 (O2S)(OO) (g, triplet C1) → (O2S)(OO) (g, singlet C1) ΔrH°(0 K) = 28.24 ± 1.6 kcal/molRuscic CBS-n
0.0899756.2 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = -0.08 ± 1.60 kcal/molRuscic G4
0.0779756.1 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.87 ± 1.72 kcal/molRuscic G3X
0.0489756.3 (O2S)(OO) (g, triplet C1) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.84 ± 2.16 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.