Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Carbon monosulfide

Formula: CS (g)
CAS RN: 2944-05-0
ATcT ID: 2944-05-0*0
SMILES: [C-]#[S+]
InChI: InChI=1S/CS/c1-2
InChIKey: DXHPZXWIPWDXHJ-UHFFFAOYSA-N
Hills Formula: C1S1

2D Image:

[C-]#[S+]
Aliases: CS; Carbon monosulfide; Sulfaniumylidynemethanide; Thiocarbonyl; Thioxomethylene; 767590-23-8
Relative Molecular Mass: 44.0767 ± 0.0061

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
278.90282.14± 0.68kJ/mol

3D Image of CS (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CS (g)

The 11 contributors listed below account for 90.4% of the provenance of ΔfH° of CS (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
29.69837.1 CS (g) → C (g) S (g) ΔrH°(0 K) = 59320 ± 100 cm-1Bell 1972
26.99837.8 CS (g) → C (g) S (g) ΔrH°(0 K) = 169.55 ± 0.30 kcal/molKarton 2011
12.69842.8 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 105.12 ± 0.30 kcal/molKarton 2011
7.79837.7 CS (g) → C (g) S (g) ΔrH°(0 K) = 169.15 ± 0.56 kcal/molKarton 2011
3.69842.7 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 104.97 ± 0.56 kcal/molKarton 2011
2.69828.7 SCS (g) → C (g) + 2 S (g) ΔrH°(0 K) = 274.67 ± 0.30 kcal/molKarton 2011
2.69834.7 SCS (g) → C (g) S2 (g) ΔrH°(0 K) = 172.97 ± 0.30 kcal/molKarton 2011
1.39837.6 CS (g) → C (g) S (g) ΔrH°(0 K) = 169.16 ± 1.35 kcal/molKarton 2011
1.19416.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
1.09837.5 CS (g) → C (g) S (g) ΔrH°(0 K) = 168.61 ± 1.50 kcal/molRuscic W1RO
0.99837.3 CS (g) → C (g) S (g) ΔrH°(0 K) = 170.67 ± 1.60 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of CS (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
87.2 Carbon monosulfide cation[CS]+ (g)[C+]=S1371.321374.56± 0.78kJ/mol44.0762 ±
0.0061
12351-95-0*0
38.2 Carbon disulfideSCS (g)S=C=S115.88116.68± 0.68kJ/mol76.1427 ±
0.0120
75-15-0*0
37.9 Carbon disulfide cation[SCS]+ (g)S=C=[S+]1088.271090.02± 0.68kJ/mol76.1422 ±
0.0120
12539-80-9*0
37.4 Carbon disulfideSCS (cr,l)S=C=S78.2389.04± 0.69kJ/mol76.1427 ±
0.0120
75-15-0*500
31.7 Carbon monosulfide anion[CS]- (g)[C-]=S259.1262.9± 2.2kJ/mol44.0772 ±
0.0061
12121-99-2*0
19.0 Monosulfur anionS- (g)[S-]76.4278.48± 0.14kJ/mol32.0665 ±
0.0060
14337-03-2*0
19.0 SulfurS (g)[S]276.83279.08± 0.14kJ/mol32.0660 ±
0.0060
7704-34-9*0
19.0 Monosulfur cationS+ (g)[S+]1276.421278.21± 0.14kJ/mol32.0655 ±
0.0060
14701-12-3*0
19.0 DisulfurS2 (g)S=S127.37127.68± 0.27kJ/mol64.1320 ±
0.0120
23550-45-0*0
18.6 Sulfur atom dication[S]+2 (g)[S++]3528.183531.88± 0.14kJ/mol32.0649 ±
0.0060
14127-58-3*0

Most Influential reactions involving CS (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0009839.1 [CS]- (g) → CS (g) ΔrH°(0 K) = 0.205 ± 0.021 eVBurnett 1982
0.4309838.1 CS (g) → [CS]+ (g) ΔrH°(0 K) = 11.319 ± 0.006 eVCoppens 1995
0.3479842.8 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 105.12 ± 0.30 kcal/molKarton 2011
0.3169838.2 CS (g) → [CS]+ (g) ΔrH°(0 K) = 11.318 ± 0.007 eVNorwood 1991a
0.3099837.1 CS (g) → C (g) S (g) ΔrH°(0 K) = 59320 ± 100 cm-1Bell 1972
0.2809837.8 CS (g) → C (g) S (g) ΔrH°(0 K) = 169.55 ± 0.30 kcal/molKarton 2011
0.1549838.3 CS (g) → [CS]+ (g) ΔrH°(0 K) = 11.33 ± 0.01 eVDrowart 1977
0.0999842.7 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 104.97 ± 0.56 kcal/molKarton 2011
0.0809837.7 CS (g) → C (g) S (g) ΔrH°(0 K) = 169.15 ± 0.56 kcal/molKarton 2011
0.0389838.4 CS (g) → [CS]+ (g) ΔrH°(0 K) = 11.33 ± 0.02 eVKing 1972
0.0389838.5 CS (g) → [CS]+ (g) ΔrH°(0 K) = 11.34 ± 0.02 eVFrost 1972
0.0179842.6 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 105.08 ± 1.35 kcal/molKarton 2011
0.0139842.5 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 104.84 ± 1.50 kcal/molRuscic W1RO
0.0139837.6 CS (g) → C (g) S (g) ΔrH°(0 K) = 169.16 ± 1.35 kcal/molKarton 2011
0.0129842.3 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 105.91 ± 1.60 kcal/molRuscic G4
0.0119837.5 CS (g) → C (g) S (g) ΔrH°(0 K) = 168.61 ± 1.50 kcal/molRuscic W1RO
0.0109842.2 SCS (g) → CS (g) S (g) ΔrH°(0 K) = 105.99 ± 1.72 kcal/molRuscic G3X
0.0099837.3 CS (g) → C (g) S (g) ΔrH°(0 K) = 170.67 ± 1.60 kcal/molRuscic G4
0.0099838.10 CS (g) → [CS]+ (g) ΔrH°(0 K) = 11.345 ± 0.040 eVRuscic W1RO
0.0089837.2 CS (g) → C (g) S (g) ΔrH°(0 K) = 170.86 ± 1.72 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.