Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Monosulfur cation |
Formula: S+ (g) |
CAS RN: 14701-12-3 |
ATcT ID: 14701-12-3*0 |
SMILES: [S+] |
InChI: InChI=1S/S/q+1 |
InChIKey: NKARKLBRYYSBBM-UHFFFAOYSA-N |
Hills Formula: S1+ |
2D Image: |
|
Aliases: S+; Monosulfur cation; Monosulfur ion (1+); Sulfur cation; Sulfur ion (1+) |
Relative Molecular Mass: 32.0655 ± 0.0060 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
1276.42 | 1278.21 | ± 0.14 | kJ/mol |
|
3D Image of S+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of S+ (g)The 10 contributors listed below account for 91.9% of the provenance of ΔfH° of S+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 30.2 | 9416.1 | S (cr,l) + O2 (g) → OSO (g)  | ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/mol | Eckman 1929, note SO2 | 16.1 | 9563.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/mol | Good 1960, CODATA Key Vals | 11.8 | 9563.2 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/mol | Mansson 1963, CODATA Key Vals | 11.3 | 9436.1 | SO (g) → S (g) + O (g)  | ΔrH°(0 K) = 43275 ± 5 cm-1 | Clerbaux 1994 | 5.5 | 9401.2 | 2 S (cr,l) → S2 (g)  | ΔrG°(570 K) = 9.483 ± 0.138 (×1.915) kcal/mol | Drowart 1968, Detry 1967, 3rd Law | 4.8 | 9602.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O)  | ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/mol | McCullough 1957a | 4.2 | 9401.4 | 2 S (cr,l) → S2 (g)  | ΔrG°(600 K) = 8.57 ± 0.29 (×1.044) kcal/mol | Braune 1951, West 1929, Gurvich TPIS, 3rd Law | 3.2 | 9562.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O)  | ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.477) kcal/mol | McCullough 1953, CODATA Key Vals | 2.2 | 9563.3 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.278) kcal/mol | Waddington 1956, Mansson 1963, est unc | 2.2 | 9561.1 | OSO (g) + 1/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (cr,l)  | ΔrH°(298.15 K) = -231.329 ± 0.040 kJ/mol | NBS Tables 1989 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of S+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.7 | Sulfur | S (g) | | 276.83 | 279.08 | ± 0.14 | kJ/mol | 32.0660 ± 0.0060 | 7704-34-9*0 | 99.7 | Monosulfur anion | S- (g) | | 76.42 | 78.48 | ± 0.14 | kJ/mol | 32.0665 ± 0.0060 | 14337-03-2*0 | 99.1 | Disulfur | S2 (g) | | 127.37 | 127.68 | ± 0.27 | kJ/mol | 64.1320 ± 0.0120 | 23550-45-0*0 | 98.3 | Sulfur atom dication | [S]+2 (g) | | 3528.18 | 3531.88 | ± 0.14 | kJ/mol | 32.0649 ± 0.0060 | 14127-58-3*0 | 90.3 | Sulfur monoxide | SO (g) | | 5.95 | 6.00 | ± 0.13 | kJ/mol | 48.0654 ± 0.0060 | 13827-32-2*0 | 90.2 | Sulfur dioxide | OSO (g) | | -294.20 | -296.74 | ± 0.13 | kJ/mol | 64.0648 ± 0.0060 | 7446-09-5*0 | 89.1 | Oxosulfur | [SO]+ (g) | | 999.26 | 999.87 | ± 0.13 | kJ/mol | 48.0649 ± 0.0060 | 767269-11-4*0 | 88.7 | Sulfonyl cation | [OSO]+ (g) | | 897.01 | 894.74 | ± 0.13 | kJ/mol | 64.0643 ± 0.0060 | 12439-77-9*0 | 84.3 | Sulfuric acid | OS(O)(OH)2 (cr,l) | | -811.89 | -813.88 | ± 0.13 | kJ/mol | 98.0795 ± 0.0061 | 7664-93-9*500 | 83.8 | Sulfur dioxide | OSO (aq, undissoc) | | | -320.69 | ± 0.14 | kJ/mol | 64.0648 ± 0.0060 | 7446-09-5*1000 |
|
Most Influential reactions involving S+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.998 | 9388.1 | S+ (g) → [S]+2 (g)  | ΔrH°(0 K) = 188232.7 ± 2.0 cm-1 | NIST Atomic Web, Martin 1990, Pettersson 1983 | 0.614 | 9387.1 | S (g) → S+ (g)  | ΔrH°(0 K) = 83559.1 ± 1.0 cm-1 | NIST Atomic Web, Martin 1990 | 0.153 | 9387.3 | S (g) → S+ (g)  | ΔrH°(0 K) = 83559.3 ± 2.0 cm-1 | NSRDS-NBS 35, est unc | 0.153 | 9387.2 | S (g) → S+ (g)  | ΔrH°(0 K) = 83558.0 ± 2.0 cm-1 | Moore 1970, Kaufman 1969, Jakobsson 1967, est unc | 0.068 | 9387.4 | S (g) → S+ (g)  | ΔrH°(0 K) = 83559 ± 3 cm-1 | Song 2001a, est unc | 0.020 | 9540.2 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.41 ± 0.01 eV | Eland 1979, Jones 1972, est unc | 0.020 | 9540.3 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.40 ± 0.01 eV | Dibeler 1968a | 0.009 | 9387.6 | S (g) → S+ (g)  | ΔrH°(0 K) = 10.360 ± 0.001 eV | Kelly 1987, est unc | 0.001 | 9388.2 | S+ (g) → [S]+2 (g)  | ΔrH°(0 K) = 188200 ± 50 cm-1 | Moore 1970, Bowen 1955, Bowen 1960, est unc | 0.001 | 9540.7 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.391 ± 0.040 eV | Ruscic W1RO | 0.000 | 9446.3 | OSO (g) → S+ (g) + O2 (g)  | ΔrH°(0 K) = 16.281 ± 0.030 eV | Erickson 1981 | 0.000 | 9540.5 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.302 ± 0.073 (×1.477) eV | Ruscic G4 | 0.000 | 9540.4 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.290 ± 0.093 (×1.297) eV | Ruscic G3X | 0.000 | 9540.6 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.278 ± 0.099 (×1.325) eV | Ruscic CBS-n | 0.000 | 9446.1 | OSO (g) → S+ (g) + O2 (g)  | ΔrH°(0 K) = 16.334 ± 0.05 (×1.114) eV | Weiss 1979, est unc | 0.000 | 9387.5 | S (g) → S+ (g)  | ΔrH°(0 K) = 10.36 ± 0.01 eV | Dunlavey 1979 | 0.000 | 9402.2 | S2 (g) → S+ (g) + S (g)  | ΔrH°(0 K) = 14.74 ± 0.01 (×3.83) eV | Berkowitz 1969a | 0.000 | 9402.1 | S2 (g) → S+ (g) + S (g)  | ΔrH°(0 K) = 14.732 ± 0.005 (×9.31) eV | Liao 1986 | 0.000 | 9402.6 | S2 (g) → S+ (g) + S (g)  | ΔrH°(0 K) = 14.721 ± 0.040 (×1.445) eV | Ruscic W1RO | 0.000 | 9402.5 | S2 (g) → S+ (g) + S (g)  | ΔrH°(0 K) = 14.659 ± 0.099 (×1.215) eV | Ruscic CBS-n |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|