Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Sulfonyl cation

Formula: [OSO]+ (g)
CAS RN: 12439-77-9
ATcT ID: 12439-77-9*0
SMILES: O=[S+]=O
InChI: InChI=1S/O2S/c1-3-2/q+1
InChIKey: MBSJVKCGZVUJLB-UHFFFAOYSA-N
Hills Formula: O2S1+

2D Image:

O=[S+]=O
Aliases: [OSO]+; Sulfonyl cation; Sulfonyl ion (1+); Dioxosulfur (1+); Sulfur dioxide cation; Sulfur dioxide ion (1+); Sulfurous oxide cation; Sulfurous oxide ion (1+)
Relative Molecular Mass: 64.0643 ± 0.0060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
897.01894.74± 0.13kJ/mol

3D Image of [OSO]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [OSO]+ (g)

The 9 contributors listed below account for 92.2% of the provenance of ΔfH° of [OSO]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.79416.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
19.19563.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
14.09563.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/molMansson 1963, CODATA Key Vals
5.69602.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/molMcCullough 1957a
4.39401.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.915) kcal/molDrowart 1968, Detry 1967, 3rd Law
3.89562.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.477) kcal/molMcCullough 1953, CODATA Key Vals
3.39401.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 (×1.044) kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
3.29411.2 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 99576 ± 2 cm-1Mo 2004
2.79563.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.278) kcal/molWaddington 1956, Mansson 1963, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [OSO]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.2 Sulfur dioxideOSO (g)O=S=O-294.20-296.74± 0.13kJ/mol64.0648 ±
0.0060
7446-09-5*0
98.2 Sulfur monoxideSO (g)S=O5.956.00± 0.13kJ/mol48.0654 ±
0.0060
13827-32-2*0
96.8 Oxosulfur[SO]+ (g)[S+]=O999.26999.87± 0.13kJ/mol48.0649 ±
0.0060
767269-11-4*0
91.6 Sulfuric acidOS(O)(OH)2 (cr,l)OS(=O)(=O)O-811.89-813.88± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*500
91.2 Sulfur dioxideOSO (aq, undissoc)O=S=O-320.69± 0.14kJ/mol64.0648 ±
0.0060
7446-09-5*1000
90.0 Sulfurous acidS(O)(OH)2 (aq, undissoc)O=S(O)O-606.50± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*1000
89.2 Sulfuric acidOS(O)(OH)2 (aq, 1000 H2O)OS(=O)(=O)O-892.23± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*839
89.2 Sulfuric acidOS(O)(OH)2 (aq, 100 H2O)OS(=O)(=O)O-887.53± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*828
89.1 Sulfuric acidOS(O)(OH)2 (aq, 75 H2O)OS(=O)(=O)O-887.18± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*825
89.1 Sulfuric acidOS(O)(OH)2 (aq, 7000 H2O)OS(=O)(=O)O-899.22± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*846

Most Influential reactions involving [OSO]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9379411.2 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 99576 ± 2 cm-1Mo 2004
0.0379411.1 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 99586 ± 10 cm-1Zhang 2005, est unc
0.0119411.5 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.3482 ± 0.0020 (×1.139) eVHolland 1994
0.0099411.4 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.3480 ± 0.0025 eVErickson 1981
0.0049411.3 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.3494 ± 0.0030 (×1.164) eVWang 1987a
0.0009411.9 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.34 ± 0.02 eVWatanabe 1957
0.0009411.6 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.32 ± 0.01 (×2.65) eVDibeler 1968a
0.0009411.7 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.32 ± 0.02 (×1.325) eVAl-Joboury 1964, est unc
0.0009412.7 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.376 ± 0.040 eVRuscic W1RO
0.0009411.8 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.305 ± 0.01 (×4.177) eVEland 1968
0.0009412.4 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.381 ± 0.073 eVRuscic G4
0.0009411.10 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.42 ± 0.06 (×1.242) eVInn 1953
0.0009412.3 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.382 ± 0.093 eVRuscic G3X
0.0009412.6 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 12.329 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.