Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].
|
Bromobenzene cation |
Formula: [C6H5Br]+ (g) |
CAS RN: 55450-33-4 |
ATcT ID: 55450-33-4*0 |
SMILES: c1ccc(cc1)[Br+] |
InChI: InChI=1S/C6H5Br/c7-6-4-2-1-3-5-6/h1-5H/q+1 |
InChIKey: AXXUXSLMJILJAL-UHFFFAOYSA-N |
Hills Formula: C6H5Br1+ |
2D Image: |
|
Aliases: Bromobenzene cation; Bromobenzene ion (1+); [C6H5Br]+; C6H5Br+ |
Relative Molecular Mass: 157.0074 ± 0.0049 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
995.1 | 973.6 | ± 1.3 | kJ/mol |
|
3D Image of [C6H5Br]+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [C6H5Br]+ (g)The 20 contributors listed below account only for 83.2% of the provenance of ΔfH° of [C6H5Br]+ (g). A total of 36 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 15.1 | 7331.1 | C6H5Br (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/mol | Chernick 1956, Hartley 1951 | 14.7 | 7344.1 | C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l)  | ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/mol | Chernick 1956, Hartley 1951 | 10.1 | 7325.2 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.827 ± 0.030 eV | Stevens 2009 | 6.7 | 7325.1 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.781 ± 0.029 (×1.269) eV | Stevens 2009 | 6.6 | 7324.1 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.049 eV | Stevens 2009 | 4.8 | 7325.5 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 273.5 ± 1 kcal/mol | Pratt 1981 | 3.6 | 7312.4 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1276.98 ± 1.60 kcal/mol | Ruscic G4 | 3.3 | 7324.2 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.069 eV | Stevens 2009 | 3.1 | 7312.3 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1277.62 ± 1.72 kcal/mol | Ruscic G3X | 2.5 | 7326.1 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.76 ± 0.02 (×3.018) eV | Rosenstock 1980, Baer 1982 | 1.9 | 7325.7 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.75 ± 0.05 (×1.354) eV | Sergeev 1970 | 1.8 | 7326.2 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.81 ± 0.07 eV | Dunbar 1984 | 1.5 | 7346.1 | C6H5I (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/mol | Chernick 1956, Hartley 1951 | 1.4 | 7326.3 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.90 ± 0.05 (×1.61) eV | Lifshitz 1991, est unc | 1.1 | 7325.6 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.73 ± 0.05 (×1.756) eV | Malinovich 1985 | 0.9 | 7326.4 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.74 ± 0.10 eV | Dunbar 1985, Dunbar 1984, est unc | 0.9 | 7355.1 | C6H5NO (g) → [C6H5]+ (g) + NO (g)  | ΔrH°(0 K) = 10.607 ± 0.020 eV | Stevens 2010a | 0.9 | 7343.1 | 2 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -1526.32 ± 2.0 kcal/mol | Smith 1956 | 0.8 | 6846.9 | [C6H5]+ (g) → 6 C (g) + 5 H (g)  | ΔrH°(0 K) = 4198.8 ± 4 kJ/mol | Lau 2006 | 0.7 | 6844.14 | C6H5 (g) → [C6H5]+ (g)  | ΔrH°(0 K) = 8.261 ± 0.035 eV | Lau 2006 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5Br]+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Bromobenzene | C6H5Br (g) | | 127.0 | 104.9 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*0 | 99.0 | Bromobenzene | C6H5Br (cr,l) | | | 60.3 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*500 | 44.1 | Phenylium | [C6H5]+ (g) | | 1149.28 | 1136.50 | ± 0.85 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*0 | 44.1 | Phenylium | [C6H5]+ (g, singlet) | | 1149.28 | 1136.50 | ± 0.85 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*2 | 38.8 | Iodobenzene | C6H5I (cr,l) | | 113.7 | 113.8 | ± 1.1 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*500 | 38.6 | Iodobenzene | C6H5I (g) | | 178.59 | 162.60 | ± 0.99 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*0 | 38.6 | Iodobenzene cation | [C6H5I]+ (g) | | 1023.59 | 1008.15 | ± 0.99 | kJ/mol | 204.0078 ± 0.0048 | 38406-85-8*0 | 16.6 | Nitrosobenzene | C6H5NO (g) | | 216.9 | 199.9 | ± 1.2 | kJ/mol | 107.1100 ± 0.0048 | 586-96-9*0 | 16.5 | Phenylium | [C6H5]+ (g, triplet) | | 1251.3 | 1238.2 | ± 1.6 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*1 | 13.6 | Phenyl | C6H5 (g) | | 352.61 | 339.25 | ± 0.60 | kJ/mol | 77.1039 ± 0.0048 | 2396-01-2*0 |
|
Most Influential reactions involving [C6H5Br]+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.979 | 7313.1 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 72570 ± 5 cm-1 | Kwon 2002 | 0.042 | 7326.1 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.76 ± 0.02 (×3.018) eV | Rosenstock 1980, Baer 1982 | 0.031 | 7326.2 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.81 ± 0.07 eV | Dunbar 1984 | 0.023 | 7326.3 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.90 ± 0.05 (×1.61) eV | Lifshitz 1991, est unc | 0.015 | 7326.4 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.74 ± 0.10 eV | Dunbar 1985, Dunbar 1984, est unc | 0.009 | 7313.2 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.991 ± 0.002 (×3.221) eV | Holland 2000 | 0.001 | 7352.1 | C6H5Br (g) + [C6H5F]+ (g) → [C6H5Br]+ (g) + C6H5F (g)  | ΔrH°(350 K) = -4.95 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 7313.9 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Watanabe 1957 | 0.000 | 7313.7 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Watanabe 1962 | 0.000 | 7313.4 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Walter 1991 | 0.000 | 7313.3 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.998 ± 0.02 eV | Potts 1980a, est unc, von Niessen 1982 | 0.000 | 7313.6 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.99 ± 0.02 eV | Klasinc 1983, est unc | 0.000 | 7313.8 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Bralsford 1960 | 0.000 | 7350.3 | C6H5Br (g) + [C6H5Cl]+ (g) → [C6H5Br]+ (g) + C6H5Cl (g)  | ΔrH°(350 K) = -1.70 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 7350.1 | C6H5Br (g) + [C6H5Cl]+ (g) → [C6H5Br]+ (g) + C6H5Cl (g)  | ΔrG°(350 K) = -2.16 ± 0.5 kcal/mol | Lias 1978, 3rd Law, est unc | 0.000 | 7350.2 | C6H5Br (g) + [C6H5Cl]+ (g) → [C6H5Br]+ (g) + C6H5Cl (g)  | ΔrH°(350 K) = -2.14 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 7313.5 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.97 ± 0.02 (×1.384) eV | Baer 1976 | 0.000 | 7313.10 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.99 ± 0.03 eV | Cvitas 1977 | 0.000 | 7313.11 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 9.03 ± 0.04 eV | Sergeev 1970, note unc3 | 0.000 | 7314.4 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 9.00 ± 0.05 eV | Streets 1973, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024)
[DOI: 10.1021/acs.jpca.4c02232]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|