Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

1-Methylene-2-propenyl

Formula: CH2CHCCH2 (g)
CAS RN: 1204515-52-5
ATcT ID: 1204515-52-5*0
SMILES: C=C[C]=C
InChI: InChI=1S/C4H5/c1-3-4-2/h3H,1-2H2
InChIKey: ZQHGTWBTOVSLEJ-UHFFFAOYSA-N
Hills Formula: C4H5

2D Image:

C=C[C]=C
Aliases: CH2CHCCH2; 1-Methylene-2-propenyl; 1-Methylene-2-propen-1-yl; 1-Vinylvinyl; i-C4H5; CH2CCHCH2; 89829-51-6; 2,3-Butadienyl
Relative Molecular Mass: 53.0825 ± 0.0032

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
327.17317.17± 0.74kJ/mol

3D Image of CH2CHCCH2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2CHCCH2 (g)

The 20 contributors listed below account only for 64.6% of the provenance of ΔfH° of CH2CHCCH2 (g).
A total of 113 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
11.03867.6 CH2CHCHCH2 (g) → CH2CHCCH2 (g) H (g) ΔrH°(0 K) = 418.39 ± 2.00 kJ/molKlippenstein 2017
11.03868.7 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 14.19 ± 2.00 kJ/molKlippenstein 2017
10.03868.6 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 3.22 ± 0.50 kcal/molWheeler 2004, est unc
7.53884.6 CH3CHCCH (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -2.07 ± 2.00 kJ/molKlippenstein 2017
6.93866.7 CH2CHCCH2 (g) → CH3CCCH2 (g) ΔrH°(0 K) = -8.73 ± 2.00 kJ/molKlippenstein 2017
1.73868.5 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 3.23 ± 1.2 kcal/molRuscic W1RO
1.53806.1 CH2CHCHCH2 (g) + 2 H2 (g) → CH3CH2CH2CH3 (g) ΔrH°(355.15 K) = -57.079 ± 0.10 kcal/molKistiakowsky 1936, Prosen 1945c
1.43868.4 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 4.68 ± 1.3 kcal/molRuscic CBS-n
1.43868.2 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 3.98 ± 1.3 kcal/molRuscic G4
1.23868.1 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 3.44 ± 1.4 kcal/molRuscic G3X
1.23861.5 [CH2CHCCH2]- (g) → CH2CHCCH2 (g) ΔrH°(0 K) = 0.741 ± 0.050 eVRuscic W1RO
1.13884.5 CH3CHCCH (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -0.34 ± 1.2 kcal/molRuscic W1RO
1.13867.5 CH2CHCHCH2 (g) → CH2CHCCH2 (g) H (g) ΔrH°(0 K) = 100.11 ± 1.50 kcal/molRuscic W1RO
1.13866.5 CH2CHCCH2 (g) → CH3CCCH2 (g) ΔrH°(0 K) = -2.34 ± 1.2 kcal/molRuscic W1RO
1.03884.4 CH3CHCCH (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -0.14 ± 1.3 kcal/molRuscic CBS-n
1.03884.2 CH3CHCCH (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -0.45 ± 1.3 kcal/molRuscic G4
0.93867.4 CH2CHCHCH2 (g) → CH2CHCCH2 (g) H (g) ΔrH°(0 K) = 99.05 ± 1.60 kcal/molRuscic CBS-n
0.93867.2 CH2CHCHCH2 (g) → CH2CHCCH2 (g) H (g) ΔrH°(0 K) = 98.89 ± 1.60 kcal/molRuscic G4
0.93868.3 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 4.97 ± 1.6 kcal/molRuscic CBS-n
0.93866.4 CH2CHCCH2 (g) → CH3CCCH2 (g) ΔrH°(0 K) = -2.44 ± 1.3 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2CHCCH2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
32.2 2-ButynylCH3CCCH2 (g)CC#C[CH2]318.15310.79± 0.66kJ/mol53.0825 ±
0.0032
82252-88-8*0
30.6 1-Methylene-2-propenylium[CH2CHCCH2]+ (g, singlet)C=C[C+]=C1059.51049.3± 1.7kJ/mol53.0820 ±
0.0032
62698-26-4*2
30.6 1-Methylene-2-propenylium[CH2CHCCH2]+ (g)C=C[C+]=C1059.51049.3± 1.7kJ/mol53.0820 ±
0.0032
62698-26-4*0
30.5 1,2-ButadienylCH3CHCCH (g)CC=C=[CH]328.95320.23± 0.63kJ/mol53.0825 ±
0.0032
4777-46-2*0
27.2 1-Methylene-2-propenylium[CH2CHCCH2]+ (g, triplet)C=C[C+]=C1256.41246.7± 1.7kJ/mol53.0820 ±
0.0032
62698-26-4*1
26.7 1,3-ButadieneCH2CHCHCH2 (g)C=CC=C125.61111.14± 0.29kJ/mol54.0904 ±
0.0032
106-99-0*0
23.4 CyclobutenylCH2(CHCHCH) (g)C1[CH]C=C1337.3324.8± 1.2kJ/mol53.0825 ±
0.0032
24669-29-2*0
21.6 2-Butynylium[CH3CCCH2]+ (g, singlet)CC#C[CH2+]1085.91077.6± 1.3kJ/mol53.0820 ±
0.0032
64235-83-2*2
21.6 2-Butynylium[CH3CCCH2]+ (g)CC#C[CH2+]1085.91077.6± 1.3kJ/mol53.0820 ±
0.0032
64235-83-2*0
18.8 2-Butynylium[CH3CCCH2]+ (g, triplet)CC#C[CH2+]1258.71251.5± 1.6kJ/mol53.0820 ±
0.0032
64235-83-2*1

Most Influential reactions involving CH2CHCCH2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1763860.5 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, triplet) ΔrH°(0 K) = 9.615 ± 0.040 eVRuscic W1RO
0.1673859.6 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, singlet) ΔrH°(0 K) = 7.570 ± 0.040 eVRuscic W1RO
0.1663866.7 CH2CHCCH2 (g) → CH3CCCH2 (g) ΔrH°(0 K) = -8.73 ± 2.00 kJ/molKlippenstein 2017
0.1643884.6 CH3CHCCH (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -2.07 ± 2.00 kJ/molKlippenstein 2017
0.1283868.7 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 14.19 ± 2.00 kJ/molKlippenstein 2017
0.1283867.6 CH2CHCHCH2 (g) → CH2CHCCH2 (g) H (g) ΔrH°(0 K) = 418.39 ± 2.00 kJ/molKlippenstein 2017
0.1173868.6 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 3.22 ± 0.50 kcal/molWheeler 2004, est unc
0.1073859.1 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, singlet) ΔrH°(0 K) = 7.60 ± 0.05 eVHansen 2006a
0.0833861.5 [CH2CHCCH2]- (g) → CH2CHCCH2 (g) ΔrH°(0 K) = 0.741 ± 0.050 eVRuscic W1RO
0.0608368.5 CH2(CHCHCH) (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -1.69 ± 1.2 kcal/molRuscic W1RO
0.0563861.2 [CH2CHCCH2]- (g) → CH2CHCCH2 (g) ΔrH°(0 K) = 0.744 ± 0.061 eVRuscic G4
0.0533860.2 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, triplet) ΔrH°(0 K) = 9.665 ± 0.073 eVRuscic G4
0.0518368.4 CH2(CHCHCH) (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -2.50 ± 1.3 kcal/molRuscic CBS-n
0.0518368.2 CH2(CHCHCH) (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -2.78 ± 1.3 kcal/molRuscic G4
0.0503859.3 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, singlet) ΔrH°(0 K) = 7.630 ± 0.073 eVRuscic G4
0.0503860.4 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, triplet) ΔrH°(0 K) = 9.654 ± 0.075 eVRuscic CBS-n
0.0473859.5 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, singlet) ΔrH°(0 K) = 7.624 ± 0.075 eVRuscic CBS-n
0.0448368.1 CH2(CHCHCH) (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -3.31 ± 1.4 kcal/molRuscic G3X
0.0413859.7 CH2CHCCH2 (g) → [CH2CHCCH2]+ (g, singlet) ΔrH°(0 K) = 7.55 ± 0.08 eVHansen 2006a, est unc
0.0388368.6 CH2(CHCHCH) (g) → CH2CHCCH2 (g) ΔrH°(0 K) = -1.7 ± 1.5 kcal/molHansen 2006a, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.