Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].
|
Carbon anion |
Formula: C- (g) |
CAS RN: 14337-00-9 |
ATcT ID: 14337-00-9*0 |
SMILES: [C-] |
InChI: InChI=1S/C/q-1 |
InChIKey: RTNCBHBYULLTCL-UHFFFAOYSA-N |
Hills Formula: C1- |
2D Image: |
|
Aliases: C-; Carbon anion; Carbon ion (1-); Carbon atom anion; Carbon atom ion (1-); Atomic carbon anion; Atomic carbon ion (1-) |
Relative Molecular Mass: 12.01125 ± 0.00080 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
589.605 | 594.752 | ± 0.039 | kJ/mol |
|
3D Image of C- (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C- (g)The 20 contributors listed below account only for 41.9% of the provenance of ΔfH° of C- (g). A total of 980 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 9.2 | 2268.11 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 1071.92 ± 0.10 kJ/mol | Thorpe 2021 | 5.4 | 2375.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 4.4 | 2278.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 4.0 | 2286.9 | C (graphite) + CO2 (g) → 2 CO (g)  | ΔrG°(1165 K) = -33.545 ± 0.058 kJ/mol | Smith 1946, note COf, 3rd Law | 2.8 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 2.6 | 2228.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 2.3 | 2262.1 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 89597.3 ± 12.0 (×1.384) cm-1 | Kepa 2014, note unc2 | 1.3 | 2262.2 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 89592 ± 15 (×1.477) cm-1 | Eidelsberg 1987 | 1.0 | 2228.4 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/mol | Lewis 1965, note CO2d | 1.0 | 2228.5 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/mol | Fraser 1952, note CO2f | 0.8 | 6825.8 | C6H6 (g) → 6 C (g) + 6 H (g)  | ΔrH°(0 K) = 5463.0 ± 1.8 kJ/mol | Harding 2011 | 0.8 | 2265.5 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 89632 ± 27 cm-1 | Ruscic 2003 | 0.8 | 2211.1 | C- (g) → C (g)  | ΔrH°(0 K) = 10179.67 ± 0.30 cm-1 | Scheer 1998d, Scheer 1998, note unc | 0.7 | 2261.3 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 89620 ± 29 cm-1 | Douglas 1955, Schmid 1935, note COj | 0.7 | 9218.1 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -25965 ± 20 kJ/mol | Kolesov 1996, est unc | 0.7 | 2228.11 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/mol | Prosen 1944a, Cox 1970, NBS TN270, NBS Tables 1989 | 0.6 | 2529.1 | CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/mol | Rossini 1937 | 0.6 | 9182.6 | C6H4(C2H2(CC(C4H4))) (g) → 14 C (g) + 10 H (g)  | ΔrH°(0 K) = 11890.6 ± 5.2 kJ/mol | Karton 2021 | 0.6 | 6825.5 | C6H6 (g) → 6 C (g) + 6 H (g)  | ΔrH°(0 K) = 1305.43 ± 0.50 kcal/mol | Karton 2017 | 0.6 | 9178.6 | C6H4(CH(CC(C4H4)CH)) (g) → 14 C (g) + 10 H (g)  | ΔrH°(0 K) = 11866.6 ± 5.2 kJ/mol | Karton 2021, Karton 2012a |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C- (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.5 | Carbon | C (g) | | 711.381 | 716.866 | ± 0.039 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 | 99.5 | Carbon | C (g, triplet) | | 711.381 | 716.866 | ± 0.039 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*1 | 99.5 | Carbon cation | C+ (g) | | 1797.834 | 1803.432 | ± 0.039 | kJ/mol | 12.01015 ± 0.00080 | 14067-05-1*0 | 99.5 | Carbon | C (g, singlet) | | 833.312 | 838.459 | ± 0.039 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*2 | 99.5 | Carbon | C (g, quintuplet) | | 1114.944 | 1120.091 | ± 0.039 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*3 | 99.4 | Carbon dication | [C]+2 (g) | | 4150.451 | 4155.597 | ± 0.039 | kJ/mol | 12.00960 ± 0.00080 | 16092-61-8*0 | 97.9 | Methyliumylidene | [CH]+ (g) | | 1619.738 | 1623.082 | ± 0.039 | kJ/mol | 13.01809 ± 0.00080 | 24361-82-8*0 | 93.4 | Ethynylene | C2 (g, triplet) | | 827.185 | 833.890 | ± 0.082 | kJ/mol | 24.0214 ± 0.0016 | 12070-15-4*1 | 93.4 | Ethynylene | C2 (g, singlet) | | 819.961 | 826.534 | ± 0.082 | kJ/mol | 24.0214 ± 0.0016 | 12070-15-4*2 | 93.4 | Ethynylene | C2 (g) | | 819.961 | 828.427 | ± 0.082 | kJ/mol | 24.0214 ± 0.0016 | 12070-15-4*0 |
|
Most Influential reactions involving C- (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.992 | 2211.1 | C- (g) → C (g)  | ΔrH°(0 K) = 10179.67 ± 0.30 cm-1 | Scheer 1998d, Scheer 1998, note unc | 0.675 | 2452.1 | [CH]- (g) → C- (g) + H (g)  | ΔrH°(0 K) = 78.83 ± 0.06 kcal/mol | Feller 2016, note unc2 | 0.197 | 2222.1 | [C]-4 (g) → C- (g)  | ΔrH°(0 K) = -21.931 ± 0.061 eV | Ruscic G4 | 0.121 | 2434.1 | [CH2]- (g) → C- (g) + 2 H (g)  | ΔrH°(0 K) = 165.69 ± 0.12 kcal/mol | Feller 2016, note unc2 | 0.081 | 2397.1 | [CH3]- (g) → C- (g) + 3 H (g)  | ΔrH°(0 K) = 262.0 ± 0.2 kcal/mol | Feller 2016, note unc2 | 0.008 | 2222.3 | [C]-4 (g) → C- (g)  | ΔrH°(0 K) = -21.674 ± 0.090 (×3.364) eV | Ruscic CBS-n | 0.002 | 2211.2 | C- (g) → C (g)  | ΔrH°(0 K) = 1.2629 ± 0.0003 (×2.594) eV | Feldmann 1977 | 0.002 | 2211.3 | C- (g) → C (g)  | ΔrH°(0 K) = 1.2621 ± 0.0008 eV | Feller 2016, note unc2 | 0.001 | 2211.4 | C- (g) → C (g)  | ΔrH°(0 K) = 1.26273 ± 0.00088 eV | Klopper 2010 | 0.001 | 2301.1 | [C2]- (g) → C (g) + C- (g)  | ΔrH°(0 K) = 188.7 ± 1.5 (×1.139) kcal/mol | Sordo 2001, Chan 2004 | 0.001 | 2211.5 | C- (g) → C (g)  | ΔrH°(0 K) = 1.26288 ± 0.00100 eV | Oliveira 1999, Martin 1998a, est unc | 0.000 | 2211.6 | C- (g) → C (g)  | ΔrH°(0 K) = 1.265 ± 0.003 eV | Cleland 2011 | 0.000 | 2809.1 | [CN]- (g) → C- (g) + N (g)  | ΔrH°(0 K) = 10.28 ± 0.1 eV | Polak 2002, est unc | 0.000 | 2222.4 | [C]-4 (g) → C- (g)  | ΔrH°(0 K) = -25.941 ± 0.050 (×79.48) eV | Ruscic W1RO | 0.000 | 2535.1 | CH2CH2 (g) → [CH4]+ (g) + C- (g)  | ΔrH°(0 K) = 17.40 ± 0.16 eV | Plessis 1987 | 0.000 | 2809.2 | [CN]- (g) → C- (g) + N (g)  | ΔrH°(0 K) = 10.17 ± 0.1 (×1.576) eV | Polak 2002, est unc | 0.000 | 2211.7 | C- (g) → C (g)  | ΔrH°(0 K) = 1.262 ± 0.010 eV | Gdanitz 1999, est unc | 0.000 | 2211.15 | C- (g) → C (g)  | ΔrH°(0 K) = 1.252 ± 0.050 eV | Ruscic W1RO | 0.000 | 2211.9 | C- (g) → C (g)  | ΔrH°(0 K) = 1.259 ± 0.050 eV | Gutsev 1998, est unc | 0.000 | 2211.12 | C- (g) → C (g)  | ΔrH°(0 K) = 1.222 ± 0.061 eV | Ruscic G4 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024)
[DOI: 10.1021/acs.jpca.4c02232]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|