Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Ethyl

Formula: CH3CH2 (g)
CAS RN: 2025-56-1
ATcT ID: 2025-56-1*0
SMILES: C[CH2]
InChI: InChI=1S/C2H5/c1-2/h1H2,2H3
InChIKey: QUPDWYMUPZLYJZ-UHFFFAOYSA-N
Hills Formula: C2H5

2D Image:

C[CH2]
Aliases: CH3CH2; Ethyl; Ethyl radical
Relative Molecular Mass: 29.0611 ± 0.0016

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
131.49120.73± 0.20kJ/mol

3D Image of CH3CH2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2 (g)

The 20 contributors listed below account only for 44.2% of the provenance of ΔfH° of CH3CH2 (g).
A total of 547 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
13.42498.3 CH3CH2 (g) → H (g) CH2CH2 (g) ΔrG°(775 K) = 19.71 ± 0.10 kcal/molBrouard 1986, 3rd Law
6.52498.1 CH3CH2 (g) → H (g) CH2CH2 (g) ΔrH°(675 K) = 153.82 ± 0.60 kJ/molBlitz 2021, Lightfoot 1987, Hanning-Lee 1993, Brouard 1986, Kurylo 1970, Michael 1973, Barker 1969, Barker 1970, Feng 1993, 2nd Law
3.72498.4 CH3CH2 (g) → H (g) CH2CH2 (g) ΔrG°(800 K) = 19.17 ± 0.19 kcal/molBrouard 1986, 3rd Law
2.42498.5 CH3CH2 (g) → H (g) CH2CH2 (g) ΔrG°(825 K) = 18.26 ± 0.11 (×2.134) kcal/molBrouard 1986, 3rd Law
2.22488.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 eVRuscic 1989b
1.92375.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.42488.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
1.32492.1 CH4 (g) → CH3CH2 (g) + 3/2 H2 (g) ΔrH°(0 K) = 264.07 ± 1.5 kJ/molKlippenstein 2017
1.12683.6 CH2NH2 (g) CH4 (g) → CH3CH2 (g) NH3 (g) ΔrH°(0 K) = -0.52 ± 1.5 kJ/molKlippenstein 2017
1.02501.6 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(298.15 K) = -14.08 ± 0.28 (×1.189) kcal/molDobis 1997, Seakins 1992, Nicovich 1991, Fettis 1960, 2nd Law
1.02502.3 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(298.15 K) = -10.20 ± 0.15 (×2.229) kcal/molDobis 1997, Fettis 1960, 3rd Law
1.02529.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
1.02494.10 CH3CH2 (g) CH4 (g) → CH3 (g) CH3CH3 (g) ΔrH°(0 K) = 16.37 ± 1.5 kJ/molKlippenstein 2017
0.9125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.92500.2 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(450 K) = -57.5 ± 1.5 kJ/molFerrell 1998, 2nd Law, est unc
0.92500.1 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(450 K) = -38.3 ± 1.5 kJ/molFerrell 1998, 3rd Law, est unc
0.72550.10 CH3CH (g, triplet) CH3 (g) → CH2 (g, triplet) CH3CH2 (g) ΔrH°(0 K) = 11.49 ± 1.5 kJ/molKlippenstein 2017
0.72500.4 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrH°(367 K) = -57.5 ± 1.7 kJ/molSeakins 1992, 2nd Law
0.62469.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 (×1.384) kJ/molPittam 1972
0.62502.5 CH3CH2 (g) HBr (g) → CH3CH3 (g) Br (g) ΔrG°(298.15 K) = -10.12 ± 0.13 (×3.221) kcal/molDobis 1997, Amphlett 1968, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
40.5 EthyleneCH2CH2 (g)C=C60.8952.38± 0.11kJ/mol28.0532 ±
0.0016
74-85-1*0
40.5 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.201067.99± 0.11kJ/mol28.0526 ±
0.0016
34470-02-5*0
38.9 EthaneCH3CH3 (g)CC-68.41-84.03± 0.12kJ/mol30.0690 ±
0.0017
74-84-0*0
29.7 PropaneCH3CH2CH3 (g)CCC-82.73-105.01± 0.15kJ/mol44.0956 ±
0.0025
74-98-6*0
27.9 Ethylium[CH3CH2]+ (g)[CH2+]1[CH2][H]1915.16903.08± 0.29kJ/mol29.0606 ±
0.0016
14936-94-8*0
22.5 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.25-125.56± 0.18kJ/mol58.1222 ±
0.0033
106-97-8*0
22.5 PropeneCH3CHCH2 (g)CC=C34.8920.05± 0.18kJ/mol42.0797 ±
0.0024
115-07-1*0
22.5 Propylene cation[CH3CHCH2]+ (g)CC=[CH2+]975.18961.65± 0.18kJ/mol42.0792 ±
0.0024
34504-10-4*0
22.3 CarbonC (g)[C]711.381716.866± 0.039kJ/mol12.01070 ±
0.00080
7440-44-0*0
22.3 CarbonC (g, triplet)[C]711.381716.866± 0.039kJ/mol12.01070 ±
0.00080
7440-44-0*1

Most Influential reactions involving CH3CH2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3474724.6 CH2CHOO (g, anti) CH3CH2 (g) → CH3CH2OO (g, gauche) CH2CH (g) ΔrH°(0 K) = 44.97 ± 2.00 kJ/molKlippenstein 2017
0.2393715.5 CH3CH2CH2CH2 (g) [CH3CH2]+ (g) → [CH3CH2CH2CH2]+ (g) CH3CH2 (g) ΔrH°(0 K) = -0.614 ± 0.020 eVRuscic W1RO
0.2365279.6 CH2C(O)OH (g, syn) CH3CH3 (g) → CH3C(O)OH (g, syn) CH3CH2 (g) ΔrH°(0 K) = 7.41 ± 2.00 kJ/molKlippenstein 2017
0.2367501.6 CH2N(O)O (g) CH3CH3 (g) → CH3N(O)O (g) CH3CH2 (g) ΔrH°(0 K) = -1.76 ± 2.0 kJ/molKlippenstein 2017
0.2165264.9 HC(O)OCH2 (g, syn) CH3CH3 (g) → HC(O)OCH3 (g, syn) CH3CH2 (g) ΔrH°(0 K) = 4.04 ± 2.00 kJ/molKlippenstein 2017
0.1852498.3 CH3CH2 (g) → H (g) CH2CH2 (g) ΔrG°(775 K) = 19.71 ± 0.10 kcal/molBrouard 1986, 3rd Law
0.1512488.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 eVRuscic 1989b
0.1214672.6 CH3CH2OO (g, trans) → CH3CH2 (g) O2 (g) ΔrH°(0 K) = 32.99 ± 0.60 kcal/molWilke 2008, est unc
0.1094724.5 CH2CHOO (g, anti) CH3CH2 (g) → CH3CH2OO (g, gauche) CH2CH (g) ΔrH°(0 K) = 10.86 ± 0.85 kcal/molRuscic W1RO
0.1052550.10 CH3CH (g, triplet) CH3 (g) → CH2 (g, triplet) CH3CH2 (g) ΔrH°(0 K) = 11.49 ± 1.5 kJ/molKlippenstein 2017
0.1054675.6 CH3CH2OO (g, gauche) CH3 (g) → CH3OO (g) CH3CH2 (g) ΔrH°(0 K) = 10.09 ± 2.00 kJ/molKlippenstein 2017
0.0994671.9 CH3CH2OO (g, gauche) → CH3CH2 (g) O2 (g) ΔrH°(0 K) = 136.93 ± 2.00 kJ/molKlippenstein 2017
0.0984724.1 CH2CHOO (g, anti) CH3CH2 (g) → CH3CH2OO (g, gauche) CH2CH (g) ΔrH°(0 K) = 10.64 ± 0.90 kcal/molRuscic G3X
0.0984724.4 CH2CHOO (g, anti) CH3CH2 (g) → CH3CH2OO (g, gauche) CH2CH (g) ΔrH°(0 K) = 11.19 ± 0.90 kcal/molRuscic CBS-n
0.0984724.2 CH2CHOO (g, anti) CH3CH2 (g) → CH3CH2OO (g, gauche) CH2CH (g) ΔrH°(0 K) = 10.70 ± 0.90 kcal/molRuscic G4
0.0972593.5 [CH3C]+ (g) CH3 (g) → [CH]+ (g) CH3CH2 (g) ΔrH°(0 K) = 65.21 ± 0.9 kcal/molRuscic W1RO
0.0962488.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
0.0962591.5 [CH3C]- (g) CH3 (g) → [CH]- (g) CH3CH2 (g) ΔrH°(0 K) = 0.13 ± 0.9 kcal/molRuscic W1RO
0.0953953.5 (CH3)2CCH2OH (g) CH3CH2 (g) → (CH3)3C (g) CH2CH2OH (g, gauche-syn) ΔrH°(0 K) = 0.57 ± 0.9 kcal/molRuscic W1RO
0.0902498.1 CH3CH2 (g) → H (g) CH2CH2 (g) ΔrH°(675 K) = 153.82 ± 0.60 kJ/molBlitz 2021, Lightfoot 1987, Hanning-Lee 1993, Brouard 1986, Kurylo 1970, Michael 1973, Barker 1969, Barker 1970, Feng 1993, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.