Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Cyclobutane

Formula: CH2(CH2CH2CH2) (g)
CAS RN: 287-23-0
ATcT ID: 287-23-0*0
SMILES: C1CCC1
InChI: InChI=1S/C4H8/c1-2-4-3-1/h1-4H2
InChIKey: PMPVIKIVABFJJI-UHFFFAOYSA-N
Hills Formula: C4H8

2D Image:

C1CCC1
Aliases: CH2(CH2CH2CH2); Cyclobutane; Tetramethylene; cyclo-Butane; cyc-C4H8; c-C4H8; UN 2601
Relative Molecular Mass: 56.1063 ± 0.0032

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
52.2427.70± 0.36kJ/mol

3D Image of CH2(CH2CH2CH2) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2(CH2CH2CH2) (g)

The 20 contributors listed below account only for 80.6% of the provenance of ΔfH° of CH2(CH2CH2CH2) (g).
A total of 62 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
32.73793.1 CH2(CH2CH2CH2) (g) → 2 CH2CH2 (g) ΔrG°(750 K) = -13.37 ± 0.12 kcal/molQuick 1972, 3rd Law, note unc3
20.13797.1 CH2(CH2CH2CH2) (l) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -650.33 ± 0.12 kcal/molKaarsemaker 1952, Coops 1950, as quoted by Cox 1970
5.03796.1 CH2(CH2CH2CH2) (l) → CH2(CH2CH2CH2) (g) ΔrH°(298.15 K) = 23.92 ± 0.48 kJ/molMajer 1985
4.53796.2 CH2(CH2CH2CH2) (l) → CH2(CH2CH2CH2) (g) ΔrH°(285.67 K) = 5.781 ± 0.12 kcal/molRathjens 1953, est unc
2.93791.6 CH2(CH2CH2CH2) (g) → 4 C (g) + 8 H (g) ΔrH°(0 K) = 1080.86 ± 0.45 kcal/molKarton 2017
2.53794.6 CH2(CH2CH2CH2) (g) H2 (g) → CH3CH2CH2CH3 (g) ΔrH°(0 K) = -150.05 ± 2.00 kJ/molKlippenstein 2017
1.88158.6 CH(CHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = -125.12 ± 2.00 kJ/molKlippenstein 2017
1.68159.6 CH(CHCHCH) (g) CH3CH2CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH2CHCHCH2 (g) ΔrH°(0 K) = -159.84 ± 2.00 kJ/molKlippenstein 2017
1.32375.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.1125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.18929.6 CH2(CH2CH2CH2) (g) → CH(CH2CH2CH2) (g) H (g) ΔrH°(0 K) = 411.91 ± 2.0 kJ/molKlippenstein 2017
0.73791.7 CH2(CH2CH2CH2) (g) → 4 C (g) + 8 H (g) ΔrH°(0 K) = 1080.7 ± 0.9 kcal/molBakowies 2020
0.63795.5 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 1.16 ± 0.9 kcal/molRuscic W1RO
0.63795.6 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 1.2 ± 0.9 kcal/molBakowies 2020
0.53793.8 CH2(CH2CH2CH2) (g) → 2 CH2CH2 (g) ΔrH°(0 K) = 16.7 ± 0.9 kcal/molBakowies 2020
0.52529.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
0.52228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.53795.2 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.80 ± 1.0 kcal/molRuscic G4
0.53795.4 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 1.07 ± 1.0 kcal/molRuscic CBS-n
0.43795.1 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 1.13 ± 1.1 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2(CH2CH2CH2) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
65.6 CyclobutaneCH2(CH2CH2CH2) (l)C1CCC13.88± 0.38kJ/mol56.1063 ±
0.0032
287-23-0*590
34.0 EthyleneCH2CH2 (g)C=C60.8952.38± 0.11kJ/mol28.0532 ±
0.0016
74-85-1*0
33.9 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.201067.99± 0.11kJ/mol28.0526 ±
0.0016
34470-02-5*0
24.7 EthaneCH3CH3 (g)CC-68.41-84.03± 0.12kJ/mol30.0690 ±
0.0017
74-84-0*0
22.9 PropaneCH3CH2CH3 (g)CCC-82.73-105.01± 0.15kJ/mol44.0956 ±
0.0025
74-98-6*0
22.7 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.25-125.56± 0.18kJ/mol58.1222 ±
0.0033
106-97-8*0
22.6 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.673± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
21.8 CarbonC (g)[C]711.381716.866± 0.039kJ/mol12.01070 ±
0.00080
7440-44-0*0
21.8 CarbonC (g, triplet)[C]711.381716.866± 0.039kJ/mol12.01070 ±
0.00080
7440-44-0*1
21.8 Carbon cationC+ (g)[C+]1797.8341803.432± 0.039kJ/mol12.01015 ±
0.00080
14067-05-1*0

Most Influential reactions involving CH2(CH2CH2CH2) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4773793.1 CH2(CH2CH2CH2) (g) → 2 CH2CH2 (g) ΔrG°(750 K) = -13.37 ± 0.12 kcal/molQuick 1972, 3rd Law, note unc3
0.4083796.1 CH2(CH2CH2CH2) (l) → CH2(CH2CH2CH2) (g) ΔrH°(298.15 K) = 23.92 ± 0.48 kJ/molMajer 1985
0.3733796.2 CH2(CH2CH2CH2) (l) → CH2(CH2CH2CH2) (g) ΔrH°(285.67 K) = 5.781 ± 0.12 kcal/molRathjens 1953, est unc
0.1348929.6 CH2(CH2CH2CH2) (g) → CH(CH2CH2CH2) (g) H (g) ΔrH°(0 K) = 411.91 ± 2.0 kJ/molKlippenstein 2017
0.1238159.6 CH(CHCHCH) (g) CH3CH2CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH2CHCHCH2 (g) ΔrH°(0 K) = -159.84 ± 2.00 kJ/molKlippenstein 2017
0.1198158.6 CH(CHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = -125.12 ± 2.00 kJ/molKlippenstein 2017
0.0603799.5 CH3CH(CH2CH2) (g) → CH2(CH2CH2CH2) (g) ΔrH°(0 K) = 0.68 ± 1.2 kcal/molRuscic W1RO
0.0513799.2 CH3CH(CH2CH2) (g) → CH2(CH2CH2CH2) (g) ΔrH°(0 K) = 1.11 ± 1.3 kcal/molRuscic G4
0.0513799.4 CH3CH(CH2CH2) (g) → CH2(CH2CH2CH2) (g) ΔrH°(0 K) = 0.92 ± 1.3 kcal/molRuscic CBS-n
0.0488930.5 CH(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH3CHCH3 (g) ΔrH°(0 K) = -1.43 ± 0.85 kcal/molRuscic W1RO
0.0443799.1 CH3CH(CH2CH2) (g) → CH2(CH2CH2CH2) (g) ΔrH°(0 K) = 0.88 ± 1.4 kcal/molRuscic G3X
0.0428930.2 CH(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH3CHCH3 (g) ΔrH°(0 K) = -1.36 ± 0.90 kcal/molRuscic G4
0.0428930.4 CH(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH3CHCH3 (g) ΔrH°(0 K) = -1.33 ± 0.90 kcal/molRuscic CBS-n
0.0428930.1 CH(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH3CHCH3 (g) ΔrH°(0 K) = -1.56 ± 0.90 kcal/molRuscic G3X
0.0363791.6 CH2(CH2CH2CH2) (g) → 4 C (g) + 8 H (g) ΔrH°(0 K) = 1080.86 ± 0.45 kcal/molKarton 2017
0.0348930.3 CH(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2) (g) CH3CHCH3 (g) ΔrH°(0 K) = -1.53 ± 1.0 kcal/molRuscic CBS-n
0.0333799.3 CH3CH(CH2CH2) (g) → CH2(CH2CH2CH2) (g) ΔrH°(0 K) = 0.91 ± 1.6 kcal/molRuscic CBS-n
0.0323794.6 CH2(CH2CH2CH2) (g) H2 (g) → CH3CH2CH2CH3 (g) ΔrH°(0 K) = -150.05 ± 2.00 kJ/molKlippenstein 2017
0.0143795.5 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 1.16 ± 0.9 kcal/molRuscic W1RO
0.0143795.6 CH2(CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 1.2 ± 0.9 kcal/molBakowies 2020


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.