Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].
|
Neon heptacation |
Formula: [Ne]+7 (g) |
CAS RN: 14175-50-9 |
ATcT ID: 14175-50-9*0 |
SMILES: [Ne+7] |
InChI: InChI=1S/Ne/q+7 |
InChIKey: XVQFAXMGRFHXKX-UHFFFAOYSA-N |
Hills Formula: Ne1+7 |
2D Image: |
|
Aliases: [Ne]+7; Neon heptacation; Neon ion (7+); Neon atom heptacation; Neon atom ion (7+); Atomic neon heptacation; Atomic neon ion (7+) |
Relative Molecular Mass: 20.17586 ± 0.00060 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
68948.7 | 68948.7 | ± 1.4 | kJ/mol |
|
3D Image of [Ne]+7 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [Ne]+7 (g)The 7 contributors listed below account for 93.4% of the provenance of ΔfH° of [Ne]+7 (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [Ne]+7 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.7 | Neon octacation | [Ne]+8 (g) | | 92018.2 | 92018.2 | ± 1.4 | kJ/mol | 20.17531 ± 0.00060 | 14782-26-4*0 | 99.7 | Neon nonacation | [Ne]+9 (g) | | 207396.1 | 207396.1 | ± 1.4 | kJ/mol | 20.17476 ± 0.00060 | 15721-59-2*0 | 99.7 | Neon decacation | [Ne]+10 (g) | | 338828.3 | 338828.3 | ± 1.4 | kJ/mol | 20.17421 ± 0.00060 | 32218-07-8*0 | 91.1 | Neon hexacation | [Ne]+6 (g) | | 48949.3 | 48949.3 | ± 1.3 | kJ/mol | 20.17641 ± 0.00060 | 14041-57-7*0 | 84.5 | Neon pentacation | [Ne]+5 (g) | | 33711.1 | 33711.1 | ± 1.2 | kJ/mol | 20.17696 ± 0.00060 | 14175-48-5*0 | 17.7 | Neon tetracation | [Ne]+4 (g) | | 21529.82 | 21531.45 | ± 0.25 | kJ/mol | 20.17751 ± 0.00060 | 14041-56-6*0 | 2.3 | Neon trication | [Ne]+3 (g) | | 12152.403 | 12152.403 | ± 0.032 | kJ/mol | 20.17805 ± 0.00060 | 14158-25-9*0 |
|
Most Influential reactions involving [Ne]+7 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.569 | 9293.5 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928462.6 ± 11.2 cm-1 | Chung 1992, Chung 1991, note unc | 0.317 | 9293.3 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928447 ± 15 cm-1 | Kramida 2006b, Chen 1995, McKenzie 1991 | 0.219 | 9292.2 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671900 ± 100 cm-1 | Kramida 2006c | 0.219 | 9292.6 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671821 ± 100 cm-1 | Odabasi 1979, est unc | 0.219 | 9292.5 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671792 ± 100 cm-1 | Edlen 1971, Edlen 1972, Kramida 2006c | 0.219 | 9292.7 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671744.6 ± 100 cm-1 | Chung 1993, est unc | 0.054 | 9292.8 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671970 ± 200 cm-1 | Safronova 1996, est unc | 0.054 | 9292.9 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671725.3 ± 200 cm-1 | Chen 1997a, est unc | 0.033 | 9293.4 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928454 ± 46 cm-1 | Kramida 2006b, note unc | 0.028 | 9293.2 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928462 ± 50 cm-1 | Kelly 1987, Bashkin 1975, Chung 1992, est unc | 0.026 | 9293.6 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928449 ± 52 cm-1 | Edlen 1979 | 0.014 | 9293.7 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928450 ± 70 cm-1 | Biemont 1999 | 0.008 | 9292.3 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1671600 ± 500 cm-1 | Biemont 1999, est unc | 0.007 | 9293.8 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928480 ± 100 cm-1 | Odabasi 1979, est unc | 0.002 | 9292.1 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 1672000 ± 1000 cm-1 | Tondello 1970 | 0.001 | 9293.1 | [Ne]+7 (g) → [Ne]+8 (g)  | ΔrH°(0 K) = 1928350 ± 200 cm-1 | Tondello 1970 | 0.000 | 9292.4 | [Ne]+6 (g) → [Ne]+7 (g)  | ΔrH°(0 K) = 207.26 ± 0.2 eV | Lotz 1967 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024)
[DOI: 10.1021/acs.jpca.4c02232]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|