Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Neon tetracation

Formula: [Ne]+4 (g)
CAS RN: 14041-56-6
ATcT ID: 14041-56-6*0
SMILES: [Ne+4]
InChI: InChI=1S/Ne/q+4
InChIKey: SMVZNLIJPINOCB-UHFFFAOYSA-N
Hills Formula: Ne1+4

2D Image:

[Ne+4]
Aliases: [Ne]+4; Neon tetracation; Neon ion (4+); Neon atom tetracation; Neon atom ion (4+); Atomic neon tetracation; Atomic neon ion (4+)
Relative Molecular Mass: 20.17751 ± 0.00060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
21529.8221531.45± 0.25kJ/mol

3D Image of [Ne]+4 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [Ne]+4 (g)

The 1 contributors listed below account for 98.0% of the provenance of ΔfH° of [Ne]+4 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
98.09289.1 [Ne]+3 (g) → [Ne]+4 (g) ΔrH°(0 K) = 783890 ± 20 cm-1Kramida 1999a

Top 10 species with enthalpies of formation correlated to the ΔfH° of [Ne]+4 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
20.9 Neon pentacation[Ne]+5 (g)[Ne+5]33711.133711.1± 1.2kJ/mol20.17696 ±
0.00060
14175-48-5*0
19.4 Neon hexacation[Ne]+6 (g)[Ne+6]48949.348949.3± 1.3kJ/mol20.17641 ±
0.00060
14041-57-7*0
17.7 Neon heptacation[Ne]+7 (g)[Ne+7]68948.768948.7± 1.4kJ/mol20.17586 ±
0.00060
14175-50-9*0
17.6 Neon octacation[Ne]+8 (g)[Ne+8]92018.292018.2± 1.4kJ/mol20.17531 ±
0.00060
14782-26-4*0
17.6 Neon nonacation[Ne]+9 (g)[Ne+9]207396.1207396.1± 1.4kJ/mol20.17476 ±
0.00060
15721-59-2*0
17.6 Neon decacation[Ne]+10 (g)[Ne+10]338828.3338828.3± 1.4kJ/mol20.17421 ±
0.00060
32218-07-8*0
13.0 Neon trication[Ne]+3 (g)[Ne+3]12152.40312152.403± 0.032kJ/mol20.17805 ±
0.00060
14158-25-9*0
1.4 Neon dication[Ne]+2 (g)[Ne++]6032.9886033.214± 0.0041kJ/mol20.17860 ±
0.00060
14041-55-5*0

Most Influential reactions involving [Ne]+4 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9979289.1 [Ne]+3 (g) → [Ne]+4 (g) ΔrH°(0 K) = 783890 ± 20 cm-1Kramida 1999a
0.8859290.1 [Ne]+4 (g) → [Ne]+5 (g) ΔrH°(0 K) = 1018250 ± 100 cm-1Kramida 1999
0.1059290.3 [Ne]+4 (g) → [Ne]+5 (g) ΔrH°(0 K) = 1018500 ± 290 cm-1Biemont 1999
0.0089290.2 [Ne]+4 (g) → [Ne]+5 (g) ΔrH°(0 K) = 1018000 ± 1000 cm-1Edlen 1964
0.0029289.3 [Ne]+3 (g) → [Ne]+4 (g) ΔrH°(0 K) = 784030 ± 370 cm-1Biemont 1999


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.