Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Carbon monoxide

Formula: CO (g, triplet)
CAS RN: 630-08-0
ATcT ID: 630-08-0*1
SMILES: [C-]#[O+]
InChI: InChI=1S/CO/c1-2
InChIKey: UGFAIRIUMAVXCW-UHFFFAOYSA-N
Hills Formula: C1O1

2D Image:

[C-]#[O+]
Aliases: CO; Carbon monoxide; Carbon monooxide; Oxomethylidene; Methylidyneoxonium; Carbon oxide
Relative Molecular Mass: 28.01010 ± 0.00085

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
465.588469.295± 0.026kJ/mol

3D Image of CO (g, triplet)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CO (g, triplet)

The 20 contributors listed below account only for 89.7% of the provenance of ΔfH° of CO (g, triplet).
A total of 21 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
60.32286.9 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
4.52228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
2.92284.4 CO (g) + 1/2 O2 (g) → CO2 (g) ΔrH°(303.15 K) = -282.974 ± 0.116 kJ/molRossini 1931a, Rossini 1931b, Rossini 1939, note CO
2.72282.7 CO2 (g) → CO (g) O+ (g) ΔrH°(0 K) = 19.0701 ± 0.0010 (×1.242) eVLiu 2003, note unc
2.22286.5 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1236.8 K) = -46.195 ± 0.3 kJ/molPeters 1958, note COe, 3rd Law
1.82284.6 CO (g) + 1/2 O2 (g) → CO2 (g) ΔrH°(293.15 K) = -283.036 ± 0.146 kJ/molFenning 1933, note COb
1.82228.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
1.82228.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
1.72284.3 CO (g) + 1/2 O2 (g) → CO2 (g) ΔrG°(1173 K) = -180.655 ± 0.150 kJ/molCaneiro 1981, note COc
1.72268.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 kJ/molThorpe 2021
1.22283.5 CO2 (g) → [CO]+ (g) O (g) ΔrH°(0 K) = 19.4687 ± 0.0010 (×1.834) eVLiu 2003, note unc
1.22228.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
0.82375.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.82228.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
0.82278.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.62228.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
0.62228.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
0.52285.3 CO (g) H2O (g) → CO2 (g) H2 (g) ΔrG°(893 K) = -6.369 ± 0.283 kJ/molMeyer 1938, note COi, 3rd Law
0.51542.4 NNO (g) CO (g) → CO2 (g) N2 (g) ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/molFenning 1933, note N2Oa
0.42262.1 CO (g) → C (g) O (g) ΔrH°(0 K) = 89597.3 ± 12.0 (×1.384) cm-1Kepa 2014, note unc2

Top 10 species with enthalpies of formation correlated to the ΔfH° of CO (g, triplet)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Carbon monoxideCO (g, singlet)[C-]#[O+]-113.794-110.514± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*2
100.0 Carbon monoxideCO (g)[C-]#[O+]-113.794-110.514± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*0
99.0 Carbon monoxide cation[CO]+ (g)[C]#[O+]1238.3151241.595± 0.026kJ/mol28.00955 ±
0.00085
12144-04-6*0
36.1 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.478± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
35.7 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.089936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
32.2 KeteneCH2CO (g, ortho singlet)C=C=O-45.22-48.40± 0.11kJ/mol42.0367 ±
0.0016
463-51-4*22
32.2 KeteneCH2CO (g, para singlet)C=C=O-45.34-48.40± 0.11kJ/mol42.0367 ±
0.0016
463-51-4*21
32.2 KeteneCH2CO (g)C=C=O-45.34-48.40± 0.11kJ/mol42.0367 ±
0.0016
463-51-4*0
32.2 KeteneCH2CO (g, singlet)C=C=O-45.34-48.40± 0.11kJ/mol42.0367 ±
0.0016
463-51-4*2
32.1 Ketene cation[CH2CO]+ (g)C=C=[O+]882.23879.06± 0.11kJ/mol42.0361 ±
0.0016
64999-16-2*0

Most Influential reactions involving CO (g, triplet)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9992288.1 CO (g, singlet) → CO (g, triplet) ΔrH°(0 K) = 48432.58653 ± 0.00006 cm-1de Nijs 2011, Velichko 2012, note unc
0.0283075.5 CO (g, triplet) H2 (g) → HCOH (g, gauche triplet) ΔrH°(0 K) = -59.63 ± 1.50 kcal/molRuscic W1RO
0.0243075.2 CO (g, triplet) H2 (g) → HCOH (g, gauche triplet) ΔrH°(0 K) = -57.98 ± 1.60 kcal/molRuscic G4
0.0243075.4 CO (g, triplet) H2 (g) → HCOH (g, gauche triplet) ΔrH°(0 K) = -58.88 ± 1.60 kcal/molRuscic CBS-n
0.0213075.1 CO (g, triplet) H2 (g) → HCOH (g, gauche triplet) ΔrH°(0 K) = -57.27 ± 1.72 kcal/molRuscic G3X
0.0173088.1 H2OC (g, triplet) → CO (g, triplet) H2 (g) ΔrH°(0 K) = 7.7 ± 2.0 (×1.114) kcal/molSchreiner 2006, est unc
0.0153075.6 CO (g, triplet) H2 (g) → HCOH (g, gauche triplet) ΔrH°(0 K) = -58.70 ± 2.0 kcal/molSchreiner 2006, est unc
0.0133075.3 CO (g, triplet) H2 (g) → HCOH (g, gauche triplet) ΔrH°(0 K) = -57.74 ± 2.16 kcal/molRuscic CBS-n
0.0002288.2 CO (g, singlet) → CO (g, triplet) ΔrH°(0 K) = 48432.65 ± 0.1 cm-1Field 1972, Field 1971, est unc
0.0002288.5 CO (g, singlet) → CO (g, triplet) ΔrH°(0 K) = 48518 ± 420 cm-1Ruscic W1RO
0.0002288.3 CO (g, singlet) → CO (g, triplet) ΔrH°(0 K) = 48484 ± 450 cm-1Ruscic G4
0.0002288.4 CO (g, singlet) → CO (g, triplet) ΔrH°(0 K) = 48485 ± 455 cm-1Ruscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.