Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].
|
Chloromethane cation |
Formula: [CH3Cl]+ (g) |
CAS RN: 12538-71-5 |
ATcT ID: 12538-71-5*0 |
SMILES: C[Cl+] |
InChI: InChI=1S/CH3Cl/c1-2/h1H3/q+1 |
InChIKey: UCZMPBXSFVNQCY-UHFFFAOYSA-N |
Hills Formula: C1H3Cl1+ |
2D Image: |
|
Aliases: [CH3Cl]+; Chloromethane cation; Chloromethane ion (1+); Methyl chloride cation; Methyl chloride ion (1+); Methyl monochloride cation; Methyl monochloride ion (1+); Monochloromethane cation; Monochloromethane ion (1+) |
Relative Molecular Mass: 50.4867 ± 0.0012 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
1014.61 | 1007.84 | ± 0.17 | kJ/mol |
|
3D Image of [CH3Cl]+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [CH3Cl]+ (g)The 20 contributors listed below account only for 53.2% of the provenance of ΔfH° of [CH3Cl]+ (g). A total of 273 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 15.8 | 6245.6 | 4 CH3Cl (g) → CCl4 (g) + 3 CH4 (g)  | ΔrH°(0 K) = 2.52 ± 0.30 kcal/mol | Karton 2017 | 6.3 | 6252.1 | CH3Br (g) → [CH3]+ (g) + Br (g)  | ΔrH°(0 K) = 12.834 ± 0.002 (×2.828) eV | Song 2001 | 4.4 | 6430.7 | CH4 (g) + CH2Cl2 (g) → 2 CH3Cl (g)  | ΔrH°(0 K) = 1.03 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 3.4 | 6236.1 | CH3Cl (g) + 3/2 O2 (g) → CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.756) kJ/mol | Fletcher 1971 | 2.4 | 6266.13 | 4 CH3Br (g) → CBr4 (g) + 3 CH4 (g)  | ΔrH°(0 K) = 26.8 ± 2.5 kJ/mol | Bross 2023 | 2.1 | 6285.5 | 4 CH3I (g) + CBr4 (g) → 4 CH3Br (g) + CI4 (g)  | ΔrH°(0 K) = -0.5 ± 2.5 kJ/mol | Bross 2023 | 1.9 | 6233.1 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 91057.0 ± 2.0 cm-1 | Grutter 2011 | 1.9 | 6433.6 | CH4 (g) + CCl4 (g) → CH3Cl (g) + CHCl3 (g)  | ΔrH°(0 K) = -3.24 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 1.7 | 2375.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.7 | 6239.10 | CH3Cl (g) + H (g) → CH4 (g) + Cl (g)  | ΔrH°(0 K) = -7296 ± 100 cm-1 | Czako 2012 | 1.6 | 6431.7 | CH4 (g) + CHCl3 (g) → CH2Cl2 (g) + CH3Cl (g)  | ΔrH°(0 K) = -0.13 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 1.3 | 6255.1 | CH3Br (g) + H2 (g) → CH4 (g) + HBr (g)  | ΔrH°(523.15 K) = -18.062 ± 0.321 kcal/mol | Fowell 1965 | 1.2 | 6338.6 | CHBr3 (g) + 2 CH4 (g) → 3 CH3Br (g)  | ΔrH°(0 K) = -8.6 ± 2.5 kJ/mol | Bross 2023 | 1.2 | 6232.3 | CH3Cl (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 371.31 ± 0.35 kcal/mol | Karton 2017 | 1.1 | 6193.8 | HCCCl (g) + CH4 (g) → HCCH (g) + CH3Cl (g)  | ΔrH°(0 K) = -2.17 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 1.0 | 6718.8 | CO2 (g) + CCl4 (g) → 2 CCl2O (g)  | ΔrH°(0 K) = 11.18 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 0.9 | 5967.6 | CCl4 (g) + 4 F (g) → CF4 (g) + 4 Cl (g)  | ΔrH°(0 K) = -160.16 ± 0.30 (×1.022) kcal/mol | Karton 2017 | 0.9 | 6232.5 | CH3Cl (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 371.34 ± 0.4 kcal/mol | Feller 2008 | 0.8 | 6461.6 | 3 CH3Cl (g) → CHCl3 (g) + 2 CH4 (g)  | ΔrH°(0 K) = -0.33 ± 0.9 kcal/mol | Ruscic W1RO | 0.8 | 6201.7 | CBr4 (g) + 4 H2 (g) → CH4 (g) + 4 HBr (g)  | ΔrH°(0 K) = -321.6 ± 2.5 kJ/mol | Bross 2023 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3Cl]+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.0 | Chloromethane | CH3Cl (g) | | -74.67 | -82.60 | ± 0.17 | kJ/mol | 50.4872 ± 0.0012 | 74-87-3*0 | 97.1 | Chloromethane | CH3Cl (l) | | -106.46 | -102.50 | ± 0.17 | kJ/mol | 50.4872 ± 0.0012 | 74-87-3*590 | 79.1 | Bromomethane | CH3Br (g) | | -20.48 | -35.88 | ± 0.19 | kJ/mol | 94.9385 ± 0.0013 | 74-83-9*0 | 76.8 | Bromomethane cation | [CH3Br]+ (g) | | 996.63 | 981.72 | ± 0.20 | kJ/mol | 94.9380 ± 0.0013 | 12538-70-4*0 | 75.0 | Bromomethane | CH3Br (l) | | -56.20 | -59.22 | ± 0.20 | kJ/mol | 94.9385 ± 0.0013 | 74-83-9*590 | 33.8 | Tetrachloromethane | CCl4 (g) | | -89.31 | -91.48 | ± 0.41 | kJ/mol | 153.8215 ± 0.0037 | 56-23-5*0 | 33.6 | Tetrachloromethane | CCl4 (l) | | -104.57 | -123.98 | ± 0.41 | kJ/mol | 153.8215 ± 0.0037 | 56-23-5*500 | 32.2 | Chloroform | CHCl3 (g) | | -94.54 | -99.44 | ± 0.39 | kJ/mol | 119.3767 ± 0.0028 | 67-66-3*0 | 31.2 | Dichloromethane | CH2Cl2 (g) | | -86.86 | -93.72 | ± 0.33 | kJ/mol | 84.9320 ± 0.0020 | 75-09-2*0 | 29.8 | Chloroform | CHCl3 (l) | | | -130.84 | ± 0.42 | kJ/mol | 119.3767 ± 0.0028 | 67-66-3*590 |
|
Most Influential reactions involving [CH3Cl]+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.986 | 6233.1 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 91057.0 ± 2.0 cm-1 | Grutter 2011 | 0.006 | 6233.2 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.289 ± 0.003 eV | Karlsson 1977 | 0.002 | 6233.3 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.290 ± 0.005 eV | Locht 2001a, est unc, Locht 2001 | 0.000 | 6234.4 | [CH3Cl]+ (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 111.90 ± 1.50 kcal/mol | Ruscic W1RO | 0.000 | 6234.2 | [CH3Cl]+ (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 112.02 ± 1.60 kcal/mol | Ruscic G4 | 0.000 | 6233.4 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.296 ± 0.010 eV | Locht 2001, est unc | 0.000 | 6233.8 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.01 eV | Dibeler 1965, est unc | 0.000 | 6233.5 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.01 eV | Locht 2001, est unc | 0.000 | 6233.6 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.01 eV | Werner 1974 | 0.000 | 6233.13 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.01 eV | Watanabe 1957 | 0.000 | 6233.7 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.01 eV | Watanabe 1962 | 0.000 | 6234.1 | [CH3Cl]+ (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 111.80 ± 1.72 kcal/mol | Ruscic G3X | 0.000 | 6233.11 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.29 ± 0.02 eV | Frost 1970 | 0.000 | 6233.10 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.29 ± 0.02 eV | Ragle 1970, est unc | 0.000 | 6233.9 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.02 eV | Turner 1970, est unc | 0.000 | 6233.12 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.28 ± 0.02 eV | Potts 1970, est unc | 0.000 | 6233.14 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 11.26 ± 0.02 (×1.509) eV | Dewar 1969a, est unc | 0.000 | 6233.15 | CH3Cl (g) → [CH3Cl]+ (g)  | ΔrH°(0 K) = 90500 ± 500 (×1.114) cm-1 | Price 1936, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024)
[DOI: 10.1021/acs.jpca.4c02232]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|