Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Ethoxyoxoniumylidene

Formula: [CH3CH2OO]+ (g, cis singlet)
CAS RN: 268728-77-4
ATcT ID: 268728-77-4*22
SMILES: CCO[O+]
InChI: InChI=1S/C2H5O2/c1-2-4-3/h2H2,1H3/q+1
InChIKey: JWGGGXRXMGZAON-UHFFFAOYSA-N
Hills Formula: C2H5O2+

2D Image:

CCO[O+]
Aliases: [CH3CH2OO]+; Ethoxyoxoniumylidene; 1-Ethyldioxidenium; 1-Ethyldioxiden-1-ium; CH3CH2OO+
Relative Molecular Mass: 61.0594 ± 0.0017

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
962.4945.9± 1.7kJ/mol

Top contributors to the provenance of ΔfH° of [CH3CH2OO]+ (g, cis singlet)

The 20 contributors listed below account only for 71.1% of the provenance of ΔfH° of [CH3CH2OO]+ (g, cis singlet).
A total of 62 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
13.04652.5 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.027 ± 0.040 eVRuscic W1RO
4.84664.5 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3246 ± 300 cm-1Ruscic W1RO
4.74694.5 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 65.21 ± 0.9 kcal/molRuscic W1RO
4.54664.2 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3186 ± 310 cm-1Ruscic G4
4.34664.1 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3209 ± 315 cm-1Ruscic G3X
3.94652.2 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.044 ± 0.073 eVRuscic G4
3.84694.4 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 65.19 ± 1.0 kcal/molRuscic CBS-n
3.84694.2 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 64.18 ± 1.0 kcal/molRuscic G4
3.74652.4 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.070 ± 0.075 eVRuscic CBS-n
3.54664.3 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3349 ± 350 cm-1Ruscic CBS-n
3.14694.1 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 64.51 ± 1.1 kcal/molRuscic G3X
2.54678.5 CH3CH2OOH (g) → [CH3CH2OO]+ (g, triplet) H (g) ΔrH°(0 K) = 13.294 ± 0.040 eVRuscic W1RO
2.44650.5 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, triplet) ΔrH°(0 K) = 9.624 ± 0.040 eVRuscic W1RO
2.44652.1 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.027 ± 0.093 eVRuscic G3X
2.24694.3 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 65.72 ± 1.3 kcal/molRuscic CBS-n
2.24698.5 CH3CH2OOH (g) → [CH3CHOOH]+ (g, trans singlet) H (g) ΔrH°(0 K) = 10.869 ± 0.040 eVRuscic W1RO
2.14652.3 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.076 ± 0.099 eVRuscic CBS-n
1.14648.6 CH3CH2OO (g, gauche) → 2 C (g) + 2 O (g) + 5 H (g) ΔrH°(0 K) = 3001.80 ± 2. kJ/molWelch 2019, Welch 2018
1.14641.6 CH3CH2OOH (g) → 2 C (g) + 6 H (g) + 2 O (g) ΔrH°(0 K) = 3354.43 ± 2. kJ/molWelch 2019, Welch 2018
1.04671.9 CH3CH2OO (g, gauche) → CH3CH2 (g) O2 (g) ΔrH°(0 K) = 136.93 ± 2.00 kJ/molKlippenstein 2017

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3CH2OO]+ (g, cis singlet)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Ethoxyoxoniumylidene[CH3CH2OO]+ (g, singlet)CCO[O+]962.4947.7± 1.7kJ/mol61.0594 ±
0.0017
268728-77-4*2
69.1 Ethoxyoxoniumylidene[CH3CH2OO]+ (g, gauche singlet)CCO[O+]967.4951.5± 2.4kJ/mol61.0594 ±
0.0017
268728-77-4*23
56.0 Ethoxyoxoniumylidene[CH3CH2OO]+ (g, triplet)CCO[O+]923.7911.4± 1.5kJ/mol61.0594 ±
0.0017
268728-77-4*1
56.0 Ethoxyoxoniumylidene[CH3CH2OO]+ (g)CCO[O+]923.7911.4± 1.5kJ/mol61.0594 ±
0.0017
268728-77-4*0
54.8 1-Hydroperoxyethylium[CH3CHOOH]+ (g)C[CH+]OO690.5675.6± 1.5kJ/mol61.0594 ±
0.0017
*126898-98-4*0
54.8 1-Hydroperoxyethylium[CH3CHOOH]+ (g, singlet)C[CH+]OO690.5675.6± 1.5kJ/mol61.0594 ±
0.0017
*126898-98-4*2
54.8 1-Hydroperoxyethylium[CH3CHOOH]+ (g, trans singlet)C[CH+]OO690.5674.8± 1.5kJ/mol61.0594 ±
0.0017
*126898-98-4*21
41.5 1-Hydroperoxyethylium[CH3CHOOH]+ (g, trans triplet)C[CH+]OO841.4829.3± 1.7kJ/mol61.0594 ±
0.0017
*126898-98-4*11
41.5 1-Hydroperoxyethylium[CH3CHOOH]+ (g, triplet)C[CH+]OO841.4830.1± 1.7kJ/mol61.0594 ±
0.0017
*126898-98-4*1
39.5 1-HydroperoxyethylCH3CHOOH (g)C[CH]OO39.525.9± 1.3kJ/mol61.0599 ±
0.0017
126898-98-4*0

Most Influential reactions involving [CH3CH2OO]+ (g, cis singlet)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0004665.1 [CH3CH2OO]+ (g, singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic W1RO, Ruscic G4, Ruscic CBS-n
0.2214666.5 [CH3CH2OO]+ (g, cis singlet) → [CH3CH2OO]+ (g, gauche singlet) ΔrH°(0 K) = 482 ± 300 cm-1Ruscic W1RO
0.2074666.2 [CH3CH2OO]+ (g, cis singlet) → [CH3CH2OO]+ (g, gauche singlet) ΔrH°(0 K) = 418 ± 310 cm-1Ruscic G4
0.2074666.4 [CH3CH2OO]+ (g, cis singlet) → [CH3CH2OO]+ (g, gauche singlet) ΔrH°(0 K) = 340 ± 310 cm-1Ruscic CBS-n
0.2004666.1 [CH3CH2OO]+ (g, cis singlet) → [CH3CH2OO]+ (g, gauche singlet) ΔrH°(0 K) = 445 ± 315 cm-1Ruscic G3X
0.1654664.5 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3246 ± 300 cm-1Ruscic W1RO
0.1624666.3 [CH3CH2OO]+ (g, cis singlet) → [CH3CH2OO]+ (g, gauche singlet) ΔrH°(0 K) = 416 ± 350 cm-1Ruscic CBS-n
0.1544652.5 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.027 ± 0.040 eVRuscic W1RO
0.1544664.2 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3186 ± 310 cm-1Ruscic G4
0.1514694.5 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 65.21 ± 0.9 kcal/molRuscic W1RO
0.1494664.1 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3209 ± 315 cm-1Ruscic G3X
0.1224694.4 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 65.19 ± 1.0 kcal/molRuscic CBS-n
0.1224694.2 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 64.18 ± 1.0 kcal/molRuscic G4
0.1214664.3 [CH3CH2OO]+ (g, triplet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 3349 ± 350 cm-1Ruscic CBS-n
0.1014694.1 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 64.51 ± 1.1 kcal/molRuscic G3X
0.0724694.3 [CH3CHOOH]+ (g, trans singlet) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 65.72 ± 1.3 kcal/molRuscic CBS-n
0.0464652.2 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.044 ± 0.073 eVRuscic G4
0.0444652.4 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.070 ± 0.075 eVRuscic CBS-n
0.0284652.1 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.027 ± 0.093 eVRuscic G3X
0.0254652.3 CH3CH2OO (g, gauche) → [CH3CH2OO]+ (g, cis singlet) ΔrH°(0 K) = 10.076 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.