Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].
|
Hypochlorous acid |
Formula: HOCl (aq, undissoc) |
CAS RN: 7790-92-3 |
ATcT ID: 7790-92-3*1000 |
SMILES: OCl |
InChI: InChI=1S/ClHO/c1-2/h2H |
InChIKey: QWPPOHNGKGFGJK-UHFFFAOYSA-N |
Hills Formula: Cl1H1O1 |
2D Image: |
|
Aliases: Hypochlorous acid; Hydrogen oxychloride; Pure Star MP 100000C; Chlorine hydroxide; Hydroxyl chloride; Hydroxychlorine; Hydroxidochlorine; ClOH; HOCl |
Relative Molecular Mass: 52.46004 ± 0.00095 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -125.526 | ± 0.050 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of HOCl (aq, undissoc)The 9 contributors listed below account for 90.0% of the provenance of ΔfH° of HOCl (aq, undissoc).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 78.3 | 1052.1 | HOCl (g) → HOCl (aq, undissoc)  | ΔrG°(298.15 K) = -16.067 ± 0.045 kJ/mol | Huthwelker 1995, Sander 2023, note unc | 5.5 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 1.6 | 2373.7 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/mol | Schley 2010 | 1.4 | 2375.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.3 | 1040.1 | HOCl (g) → OH (g) + Cl (g)  | ΔrH°(0 K) = 19287.9 ± 0.7 cm-1 | Barnes 1997 | 0.5 | 1040.2 | HOCl (g) → OH (g) + Cl (g)  | ΔrH°(0 K) = 19289.4 ± 0.7 (×1.61) cm-1 | Wedlock 1997 | 0.3 | 1053.4 | Cl2 (aq, undissoc) + H2O (cr,l) → HOCl (aq, undissoc) + H+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = 19.74 ± 0.62 kJ/mol | Whitney 1941, note unc | 0.3 | 115.11 | H2O (g) → O (g) + 2 H (g)  | ΔrH°(0 K) = 917.80 ± 0.15 kJ/mol | Thorpe 2021 | 0.3 | 157.1 | OH (g) → [OH]+ (g)  | ΔrH°(0 K) = 104989 ± 5 (×2.378) cm-1 | Wiedmann 1992, note unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HOCl (aq, undissoc) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 66.2 | Hypochlorite | [ClO]- (aq) | | | -110.488 | ± 0.076 | kJ/mol | 51.45265 ± 0.00095 | 14380-61-1*1000 | 66.2 | Hypochlorous acid | HOCl (aq) | | | -110.488 | ± 0.076 | kJ/mol | 52.46004 ± 0.00095 | 7790-92-3*800 | 45.5 | Hypochlorous acid | HOCl (g) | | -73.844 | -76.784 | ± 0.023 | kJ/mol | 52.46004 ± 0.00095 | 7790-92-3*0 | 43.3 | Hydroxyl | OH (g) | | 37.274 | 37.514 | ± 0.022 | kJ/mol | 17.00734 ± 0.00031 | 3352-57-6*0 | 43.3 | Hydroxyde | [OH]- (g) | | -139.068 | -139.034 | ± 0.022 | kJ/mol | 17.00789 ± 0.00031 | 14280-30-9*0 | 43.2 | Water | H2O (l, eq.press.) | | | -285.806 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*589 | 43.2 | Water | H2O (g, ortho) | | -238.622 | -241.810 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*1 | 43.2 | Water | H2O (g, para) | | -238.907 | -241.810 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*2 | 43.2 | Water | H2O (g) | | -238.907 | -241.810 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*0 | 43.2 | Water | H2O (l) | | | -285.804 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 |
|
Most Influential reactions involving HOCl (aq, undissoc)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.996 | 1056.1 | HOCl (aq, undissoc) → H+ (aq) + [ClO]- (aq)  | ΔrG°(298.15 K) = 43.019 ± 0.057 kJ/mol | Morris 1966 | 0.988 | 1052.1 | HOCl (g) → HOCl (aq, undissoc)  | ΔrG°(298.15 K) = -16.067 ± 0.045 kJ/mol | Huthwelker 1995, Sander 2023, note unc | 0.027 | 1053.4 | Cl2 (aq, undissoc) + H2O (cr,l) → HOCl (aq, undissoc) + H+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = 19.74 ± 0.62 kJ/mol | Whitney 1941, note unc | 0.013 | 1053.1 | Cl2 (aq, undissoc) + H2O (cr,l) → HOCl (aq, undissoc) + H+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = 19.09 ± 0.50 (×1.756) kJ/mol | Yadav 1981, Deshwal 2015, est unc | 0.010 | 1054.1 | Cl2 (aq, undissoc) + [OH]- (aq) → HOCl (aq, undissoc) + Cl- (aq)  | ΔrG°(298.15 K) = -59.9 ± 1.0 kJ/mol | Yadav 1981, Hikita 1973 | 0.002 | 1056.2 | HOCl (aq, undissoc) → H+ (aq) + [ClO]- (aq)  | ΔrH°(298.15 K) = 14.378 ± 1.10 kJ/mol | Morris 1966 | 0.000 | 1053.2 | Cl2 (aq, undissoc) + H2O (cr,l) → HOCl (aq, undissoc) + H+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = 19.1 ± 4.0 kJ/mol | NBS Tables 1989 | 0.000 | 1054.2 | Cl2 (aq, undissoc) + [OH]- (aq) → HOCl (aq, undissoc) + Cl- (aq)  | ΔrG°(298.15 K) = -14.53 ± 1. kcal/mol | Morris 1946, est unc | 0.000 | 1052.5 | HOCl (g) → HOCl (aq, undissoc)  | ΔrG°(298.15 K) = -16.0 ± 2 kJ/mol | Ourisson 1939, Sander 2023, est unc | 0.000 | 1052.7 | HOCl (g) → HOCl (aq, undissoc)  | ΔrG°(298.15 K) = -15.6 ± 2. kJ/mol | Hilal 2008, Sander 2023, est unc | 0.000 | 1052.2 | HOCl (g) → HOCl (aq, undissoc)  | ΔrH°(298.15 K) = -48.74 ± 2.4 kJ/mol | Huthwelker 1995, Sander 2023, note unc | 0.000 | 1056.3 | HOCl (aq, undissoc) → H+ (aq) + [ClO]- (aq)  | ΔrG°(298.15 K) = 43.1 ± 4.0 kJ/mol | NBS Tables 1989 | 0.000 | 1056.4 | HOCl (aq, undissoc) → H+ (aq) + [ClO]- (aq)  | ΔrH°(298.15 K) = 13.8 ± 4.0 kJ/mol | NBS Tables 1989 | 0.000 | 1056.7 | HOCl (aq, undissoc) → H+ (aq) + [ClO]- (aq)  | ΔrG°(298.15 K) = 42 ± 5 kJ/mol | Sand 1904, Ingham 1933, Williams 2022, est unc | 0.000 | 1056.6 | HOCl (aq, undissoc) → H+ (aq) + [ClO]- (aq)  | ΔrG°(298.15 K) = 42 ± 5 kJ/mol | Ingham 1933, Williams 2022, est unc | 0.000 | 1052.3 | HOCl (g) → HOCl (aq, undissoc)  | ΔrG°(298.15 K) = -13.8 ± 4.0 kJ/mol | NBS Tables 1989 | 0.000 | 1053.3 | Cl2 (aq, undissoc) + H2O (cr,l) → HOCl (aq, undissoc) + H+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 21.2 ± 4.0 (×2.89) kJ/mol | NBS Tables 1989 | 0.000 | 1052.4 | HOCl (g) → HOCl (aq, undissoc)  | ΔrH°(298.15 K) = -42.2 ± 4.0 (×1.646) kJ/mol | NBS Tables 1989 | 0.000 | 1052.6 | HOCl (g) → HOCl (aq, undissoc)  | ΔrH°(298.15 K) = -74. ± 30. kJ/mol | Ourisson 1939, Sander 2023, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024)
[DOI: 10.1021/acs.jpca.4c02232]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|