Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Hydrogen fluoride

Formula: HF (g)
CAS RN: 7664-39-3
ATcT ID: 7664-39-3*0
SMILES: F
InChI: InChI=1S/FH/h1H
InChIKey: KRHYYFGTRYWZRS-UHFFFAOYSA-N
Hills Formula: F1H1

2D Image:

F
Aliases: HF; Hydrogen fluoride; Hydrogen monofluoride; Hydrofluoric acid; Fluorhydric acid; Fluorohydric acid; Fluorohydrogen; Fluoric acid; Fluorine hydride; Fluorine monohydride
Relative Molecular Mass: 20.006343 ± 0.000070

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-272.679-272.726± 0.018kJ/mol

3D Image of HF (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HF (g)

The 5 contributors listed below account for 90.3% of the provenance of ΔfH° of HF (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
45.9461.1 F2 (g) → F+ (g) F- (g) ΔrH°(0 K) = 15.62294 ± 0.00043 eVMatthiasson 2021
23.6462.1 F2 (g) → F+ (g) F (g) ΔrH°(0 K) = 19.0242 ± 0.0006 eVMatthiasson 2021
10.4483.1 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.1 ± 0.9 cm-1Hu 2006a, Hu 2005a
8.4483.2 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.7 ± 1 cm-1Martin 2000, Hu 2006a
1.8438.1 F2 (g) → 2 F (g) ΔrH°(0 K) = 36.91 ± 0.05 kcal/molFeller 2014

Top 10 species with enthalpies of formation correlated to the ΔfH° of HF (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
89.6 FluorideF- (g)[F-]-250.911-249.127± 0.017kJ/mol18.99895178 ±
0.00000050
16984-48-8*0
89.6 Fluorine atomF (g)[F]77.25379.359± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*0
89.6 Fluorine atomF (g, 2P3/2)[F]77.25379.038± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*1
89.6 Fluorine atomF (g, 2P1/2)[F]82.08883.873± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*2
86.1 Fluorine atom cationF+ (g)[F+]1758.3011760.600± 0.017kJ/mol18.99785462 ±
0.00000050
14701-13-4*0
83.0 Fluoroniumyl ion[HF]+ (g)[FH+]1275.5561275.788± 0.022kJ/mol20.005795 ±
0.000070
12381-92-9*0
69.0 Fluorine atom dication[F]+2 (g)[F+2]5132.4725134.256± 0.021kJ/mol18.99730604 ±
0.00000050
14701-07-6*0
47.0 Chlorine fluorideClF (g)ClF-55.622-55.717± 0.030kJ/mol54.45110 ±
0.00090
7790-89-8*0
44.3 Fluorine atom trication[F]+3 (g)[F+3]11182.87211186.697± 0.032kJ/mol18.99675746 ±
0.00000050
14700-88-0*0
13.1 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.62-933.59± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0

Most Influential reactions involving HF (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.995477.1 HF (g) → [HF]+ (g) ΔrH°(0 K) = 129422.4 ± 1 cm-1Mank 1994
0.935612.8 [FHF]- (g) → HF (g) F- (g) ΔrH°(0 K) = 15176 ± 30 cm-1Stein 2013, Sebald 2013a, note unc2
0.536483.1 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.1 ± 0.9 cm-1Hu 2006a, Hu 2005a
0.434483.2 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.7 ± 1 cm-1Martin 2000, Hu 2006a
0.247588.4 [(HF)(H)]+ (g, triplet) → HF (g) H+ (g) ΔrH°(0 K) = -56.71 ± 0.90 kcal/molRuscic W1RO
0.220579.3 (HF)(H) (g) → HF (g) H (g) ΔrH°(0 K) = -42.3 ± 300 cm-1Ruscic CCSD(T), est unc
0.220579.7 (HF)(H) (g) → HF (g) H (g) ΔrH°(0 K) = -43.4 ± 300 cm-1Ruscic MP4, est unc
0.188578.8 (H)(HF) (g) → HF (g) H (g) ΔrH°(0 K) = -101.0 ± 300 cm-1Ruscic CCSD(T), est unc
0.188578.12 (H)(HF) (g) → HF (g) H (g) ΔrH°(0 K) = -103.9 ± 300 cm-1Ruscic MP4, est unc
0.1716543.11 CH2CHF (g) H2 (g) → CH2CH2 (g) HF (g) ΔrH°(0 K) = -18.51 ± 0.25 kcal/molKarton 2011
0.143797.7 [HClH]+ (g) HF (g) → [HFH]+ (g) HCl (g) ΔrH°(0 K) = 17.14 ± 0.8 kcal/molRuscic W1U, Ruscic W1RO
0.138479.8 [HF]- (g) → HF (g) ΔrH°(0 K) = -2.044 ± 0.050 eVRuscic W1RO
0.114537.3 HF (g) → HF (aq) ΔrH°(298.15 K) = -14.81 ± 0.10 kcal/molVanderzee 1971, Westrum 1949, Davis 1961, Ruterjans 1969
0.1046508.11 CH3CH2F (g) H2 (g) → CH3CH3 (g) HF (g) ΔrH°(0 K) = -20.09 ± 0.25 kcal/molKarton 2011
0.103604.6 (F)(HF) (g, lin) → HF (g) F (g) ΔrH°(0 K) = 174 ± 300 cm-1Meuwly 2000
0.093479.4 [HF]- (g) → HF (g) ΔrH°(0 K) = -2.036 ± 0.061 eVRuscic G4
0.091797.4 [HClH]+ (g) HF (g) → [HFH]+ (g) HCl (g) ΔrH°(0 K) = 17.88 ± 1.0 kcal/molRuscic G4
0.0862862.9 FCN (g) H2 (g) → HCN (g) HF (g) ΔrH°(0 K) = -150.9 ± 2.5 kJ/molKlopper 2010a
0.074584.6 [HFH]+ (g, singlet) H2O (g) → HF (g) [H3O]+ (g) ΔrH°(0 K) = -48.08 ± 0.8 kcal/molRuscic W1RO, Ruscic W1U
0.073585.5 [HFH]+ (g, singlet) H2 (g) → HF (g) [H3]+ (g) ΔrH°(0 K) = 15.46 ± 0.8 kcal/molRuscic W1RO, Ruscic W1U


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.