Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].
|
Hydroxyde |
Formula: [OH]- (aq) |
CAS RN: 14280-30-9 |
ATcT ID: 14280-30-9*800 |
SMILES: [OH-] |
InChI: InChI=1S/H2O/h1H2/p-1 |
InChIKey: XLYOFNOQVPJJNP-UHFFFAOYSA-M |
Hills Formula: H1O1- |
2D Image: |
|
Aliases: [OH]-; Hydroxyde; Hydroxyde ion; Hydroxide anion; Hydroxyde ion (1-); Hydroxyl anion; Hydroxyl ion (1-); Oxygen hydride anion; Oxygen hydride ion (1-); Hydroxy anion; Hydroxy ion (1-); HO-; OH- |
Relative Molecular Mass: 17.00789 ± 0.00031 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -229.758 | ± 0.023 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of [OH]- (aq)The 20 contributors listed below account only for 64.9% of the provenance of ΔfH° of [OH]- (aq). A total of 291 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 29.0 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 8.4 | 2357.7 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/mol | Schley 2010 | 8.1 | 2359.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 2.0 | 115.11 | H2O (g) → O (g) + 2 H (g)  | ΔrH°(0 K) = 917.80 ± 0.15 kJ/mol | Thorpe 2021 | 1.8 | 157.1 | OH (g) → [OH]+ (g)  | ΔrH°(0 K) = 104989 ± 5 (×2.327) cm-1 | Wiedmann 1992, note unc | 1.6 | 167.6 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.044) eV | Bodi 2014 | 1.4 | 152.1 | OH (g) → O (g) + H (g)  | ΔrH°(0 K) = 35580 ± 15 cm-1 | Sun 2020 | 1.3 | 1717.1 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/mol | Vanderzee 1972c | 1.1 | 169.1 | [OH]- (g) → O- (g) + H (g)  | ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.044) eV | Martin 2001, est unc | 1.1 | 217.1 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.891 ± 0.006 kJ/mol | Arcis 2020, Marshall 1981 | 1.1 | 217.3 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.892 ± 0.006 kJ/mol | Arcis 2020, Bandura 2006 | 1.1 | 2357.4 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/mol | Dale 2002 | 0.9 | 167.7 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1190 ± 0.002 eV | Bodi 2014 | 0.8 | 2252.11 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 1071.92 ± 0.10 (×1.242) kJ/mol | Thorpe 2021 | 0.8 | 167.5 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1177 ± 0.0015 (×1.445) eV | Bodi 2014 | 0.7 | 175.1 | [OH]+ (g) → O+ (g) + H (g)  | ΔrH°(0 K) = 40412.0 ± 2.2 cm-1 | Moselhy 1975, note unc | 0.7 | 2357.8 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.482 ± 0.260 kJ/mol | Haloua 2015 | 0.7 | 2357.6 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/mol | GOMB Ref Calorimeter, Alexandrov 2002 | 0.6 | 2269.3 | CO (g) + H2O (g) → CO2 (g) + H2 (g)  | ΔrG°(893 K) = -6.369 ± 0.283 kJ/mol | Meyer 1938, note COi, 3rd Law | 0.6 | 2262.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [OH]- (aq) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.5 | Water | H2O (l) | | | -285.802 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 | 98.5 | Water | H2O (l, eq.press.) | | | -285.804 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*589 | 98.5 | Water | H2O (cr,l) | | -286.274 | -285.802 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 | 98.5 | Water | H2O (cr, l, eq.press.) | | -286.276 | -285.804 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*499 | 98.5 | Oxonium | [H3O]+ (aq) | | | -285.802 | ± 0.022 | kJ/mol | 19.02267 ± 0.00037 | 13968-08-6*800 | 98.5 | Water | H2O (g, ortho) | | -238.620 | -241.807 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*1 | 98.5 | Water | H2O (g, para) | | -238.904 | -241.807 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*2 | 98.5 | Water | H2O (g) | | -238.904 | -241.807 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*0 | 98.4 | Water | H2O (cr) | | -286.274 | -292.715 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*510 | 98.4 | Water | H2O (cr, eq.press.) | | -286.276 | -292.717 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*509 |
|
Most Influential reactions involving [OH]- (aq)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 1724.1 | NH4OH (aq) → [NH4]+ (aq) + [OH]- (aq)  | ΔrH°(298.15 K) = 0 ± 0 cm-1 | triv | 0.402 | 217.1 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.891 ± 0.006 kJ/mol | Arcis 2020, Marshall 1981 | 0.402 | 217.3 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.892 ± 0.006 kJ/mol | Arcis 2020, Bandura 2006 | 0.162 | 1715.3 | NH3 (aq, undissoc) + H2O (cr,l) → [NH4]+ (aq) + [OH]- (aq)  | ΔrH°(298.15 K) = 0.920 ± 0.010 kcal/mol | Vanderzee 1972a | 0.093 | 222.3 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.877 ± 0.010 (×1.242) kJ/mol | Harned 1958, CODATA Key Vals | 0.062 | 536.1 | HF (g) + [OH]- (aq) → F- (aq) + H2O (cr,l)  | ΔrH°(298.15 K) = -28.065 ± 0.10 (×1.354) kcal/mol | Vanderzee 1971 | 0.027 | 4309.1 | CH2CO (g) + [OH]- (aq) + H+ (aq) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/mol | Nuttall 1971 | 0.017 | 217.9 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.907 ± 0.029 kJ/mol | Chen 1994b, Arcis 2020 | 0.017 | 217.7 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.881 ± 0.029 kJ/mol | Bandura 2006, est unc | 0.015 | 3203.1 | CO2 (g) + [OH]- (aq) → [HOC(O)O]- (aq)  | ΔrH°(298.15 K) = -15.870 ± 0.033 (×1.682) kcal/mol | Berg 1978, Berg 1978a, CODATA Key Vals | 0.015 | 536.2 | HF (g) + [OH]- (aq) → F- (aq) + H2O (cr,l)  | ΔrH°(298.15 K) = -27.93 ± 0.20 (×1.354) kcal/mol | Vanderzee 1971 | 0.009 | 222.6 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.923 ± 0.040 kJ/mol | Prue 1971, as quoted by CODATA Key Vals | 0.009 | 222.7 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.895 ± 0.040 kJ/mol | Fisher 1972, as quoted by CODATA Key Vals | 0.009 | 219.7 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.906 ± 0.040 kJ/mol | Olofsson 1975, as quoted by CODATA Key Vals | 0.005 | 218.1 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.872 ± 0.050 kJ/mol | Sweeton 1974, as quoted by CODATA Key Vals | 0.005 | 218.3 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.872 ± 0.051 kJ/mol | Arcis 2020, Busey 1976 | 0.005 | 1715.2 | NH3 (aq, undissoc) + H2O (cr,l) → [NH4]+ (aq) + [OH]- (aq)  | ΔrH°(298.15 K) = 0.865 ± 0.030 (×1.874) kcal/mol | Pitzer 1937 | 0.004 | 218.5 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.912 ± 0.057 kJ/mol | Palmer 1988 | 0.004 | 217.5 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.883 ± 0.057 kJ/mol | Marshall 1981 | 0.001 | 222.5 | H2O (l) → H+ (aq) + [OH]- (aq)  | ΔrG°(298.15 K) = 79.986 ± 0.050 (×1.957) kJ/mol | Bezboruah 1973, CODATA Key Vals |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023)
[DOI: 10.1016/j.jms.2023.111847]
|
5
|
|
U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023)
[DOI: 10.1039/D3CP04244H]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|