Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Dimethyl sulfide cation

Formula: [CH3SCH3]+ (g)
CAS RN: 34480-65-4
ATcT ID: 34480-65-4*0
SMILES: C[S+]C
InChI: InChI=1S/C2H6S/c1-3-2/h1-2H3/q+1
InChIKey: FAMVJNKPSUFPFF-UHFFFAOYSA-N
Hills Formula: C2H6S1+

2D Image:

C[S+]C
Aliases: [CH3SCH3]+; Dimethyl sulfide cation; Dimethyl sulfide ion (1+); CH3SCH3+
Relative Molecular Mass: 62.1345 ± 0.0062

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
817.86802.11± 0.48kJ/mol

3D Image of [CH3SCH3]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3SCH3]+ (g)

The 10 contributors listed below account for 91.1% of the provenance of ΔfH° of [CH3SCH3]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
27.49546.1 CH3SCH3 (cr,l) + 5 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -521.10 ± 0.08 kcal/molMcCullough 1957a
21.99542.1 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 70062 ± 40 cm-1McDiarmid 1974, est unc
21.59542.3 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.685 ± 0.005 eVWatanabe 1962
5.99547.1 CH3SCH3 (cr,l) → CH3SCH3 (g) ΔrH°(298.15 K) = 27.99 ± 0.14 kJ/molMajer 1985
4.19548.1 CH3SCH3 (cr,l) → CH3CH2SH (cr,l) ΔrH°(298.15 K) = -1.98 ± 0.13 kcal/molMcCullough 1957a
2.49542.2 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 70115 ± 120 cm-1Scott 1973, est unc
2.39536.1 CH3CH2SH (cr,l) + 5 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -519.12 ± 0.10 kcal/molMcCullough 1957a
2.09168.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
1.69554.1 CH3S(O)CH3 (cr,l) + 9/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -2043.43 ± 1.25 kJ/molMasuda 1994
1.59298.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3SCH3]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
72.6 Dimethyl sulfideCH3SCH3 (g)CSC-20.23-36.74± 0.35kJ/mol62.1350 ±
0.0062
75-18-3*0
67.4 Dimethyl sulfideCH3SCH3 (cr,l)CSC-63.11-64.72± 0.33kJ/mol62.1350 ±
0.0062
75-18-3*500
41.2 DimethylsulfoxideCH3S(O)CH3 (l)CS(=O)C-203.58± 0.49kJ/mol78.1344 ±
0.0062
67-68-5*590
41.2 DimethylsulfoxideCH3S(O)CH3 (cr,l)CS(=O)C-201.93-203.58± 0.49kJ/mol78.1344 ±
0.0062
67-68-5*500
36.1 DimethylsulfoxideCH3S(O)CH3 (g)CS(=O)C-131.91-150.56± 0.57kJ/mol78.1344 ±
0.0062
67-68-5*0
28.9 EthanethiolCH3CH2SH (cr,l)CCS-71.48-73.09± 0.37kJ/mol62.1350 ±
0.0062
75-08-1*500
28.2 Sulfuric acid dihydrate(OS(O)(OH)2)(H2O)2 (cr,l)OS(=O)(=O)O.O.O-1422.14-1426.93± 0.14kJ/mol134.1100 ±
0.0063
13451-10-0*500
28.0 Sulfuric acid trihydrate(OS(O)(OH)2)(H2O)3 (cr,l)OS(=O)(=O)O.O.O.O-1716.09-1720.20± 0.15kJ/mol152.1253 ±
0.0064
40835-65-2*500
27.9 Sulfuric acid monohydrate(OS(O)(OH)2)(H2O) (cr,l)OS(=O)(=O)O.O-1126.33-1127.48± 0.13kJ/mol116.0948 ±
0.0062
10193-30-3*500
27.7 EthanethiolCH3CH2SH (g)CCS-28.75-45.57± 0.38kJ/mol62.1350 ±
0.0062
75-08-1*0

Most Influential reactions involving [CH3SCH3]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4659542.1 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 70062 ± 40 cm-1McDiarmid 1974, est unc
0.4579542.3 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.685 ± 0.005 eVWatanabe 1962
0.0519542.2 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 70115 ± 120 cm-1Scott 1973, est unc
0.0079542.10 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.688 ± 0.040 eVRuscic W1RO
0.0049542.6 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.68 ± 0.05 eVCullen 1969, est unc
0.0049542.4 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.67 ± 0.05 eVMollere 1973, est unc
0.0049542.5 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.70 ± 0.05 eVBunzli 1973, est unc
0.0029542.8 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.678 ± 0.073 eVRuscic G4
0.0019542.7 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.691 ± 0.093 eVRuscic G3X
0.0019542.9 CH3SCH3 (g) → [CH3SCH3]+ (g) ΔrH°(0 K) = 8.694 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.