Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Sulfur dioxide

Formula: OSO (g)
CAS RN: 7446-09-5
ATcT ID: 7446-09-5*0
SMILES: O=S=O
InChI: InChI=1S/O2S/c1-3-2
InChIKey: RAHZWNYVWXNFOC-UHFFFAOYSA-N
Hills Formula: O2S1

2D Image:

O=S=O
Aliases: OSO; Sulfur dioxide; Oxosulfane oxide; Dioxo-lambda4-sulfane; Sulfurous oxide; Sulfurous anhydride; Sulfurous acid anhydride; Sulfur oxide; E 220
Relative Molecular Mass: 64.0648 ± 0.0060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-294.20-296.74± 0.13kJ/mol

3D Image of OSO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of OSO (g)

The 8 contributors listed below account for 92.1% of the provenance of ΔfH° of OSO (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
37.09168.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
19.79298.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
14.59298.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/molMansson 1963, CODATA Key Vals
5.89337.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/molMcCullough 1957a
4.59153.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.915) kcal/molDrowart 1968, Detry 1967, 3rd Law
4.09297.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.477) kcal/molMcCullough 1953, CODATA Key Vals
3.49153.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 (×1.044) kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
2.89298.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.278) kcal/molWaddington 1956, Mansson 1963, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of OSO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Sulfur monoxideSO (g)S=O5.956.00± 0.13kJ/mol48.0654 ±
0.0060
13827-32-2*0
98.6 Oxosulfur[SO]+ (g)[S+]=O999.26999.87± 0.13kJ/mol48.0649 ±
0.0060
767269-11-4*0
98.2 Sulfonyl cation[OSO]+ (g)O=[S+]=O897.01894.74± 0.13kJ/mol64.0643 ±
0.0060
12439-77-9*0
93.2 Sulfuric acidOS(O)(OH)2 (cr,l)OS(=O)(=O)O-811.88-813.87± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*500
92.8 Sulfur dioxideOSO (aq, undissoc)O=S=O-320.69± 0.14kJ/mol64.0648 ±
0.0060
7446-09-5*1000
91.6 Sulfurous acidS(O)(OH)2 (aq, undissoc)O=S(O)O-606.49± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*1000
90.8 Sulfuric acidOS(O)(OH)2 (aq, 1000 H2O)OS(=O)(=O)O-892.23± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*839
90.7 Sulfuric acidOS(O)(OH)2 (aq, 100 H2O)OS(=O)(=O)O-887.52± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*828
90.7 Sulfuric acidOS(O)(OH)2 (aq, 75 H2O)OS(=O)(=O)O-887.18± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*825
90.7 Sulfuric acidOS(O)(OH)2 (aq, 7000 H2O)OS(=O)(=O)O-899.22± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*846

Most Influential reactions involving OSO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9999194.1 OSO (g) → SO (g) O (g) ΔrH°(0 K) = 45725.3 ± 0.2 cm-1Becker 1995, Becker 1993, Braatz 1998, note unc2
0.9659296.1 OSO (g) + 1/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (cr,l) ΔrH°(298.15 K) = -231.329 ± 0.040 kJ/molNBS Tables 1989
0.9499175.1 OSO (g) → OSO (aq, undissoc) ΔrG°(298.15 K) = -0.738 ± 0.05 kJ/molYoung 1983
0.9379163.2 OSO (g) → [OSO]+ (g) ΔrH°(0 K) = 99576 ± 2 cm-1Mo 2004
0.8639165.1 [OSO]- (g) → OSO (g) ΔrH°(0 K) = 1.107 ± 0.008 eVNimlos 1986
0.7859173.2 OSO (cr,l) → OSO (g) ΔrH°(263.13 K) = 5.96 ± 0.5 kcal/molGiauque 1938a, WinTable 2003, est unc
0.7649238.4 OS(O)Cl2 (g) → OSO (g) Cl2 (g) ΔrH°(298.15 K) = 13.84 ± 0.20 kcal/molArii 1931, 3rd Law, JANAF 3
0.6999410.5 S(O)(OH)2 (g, cis) → H2O (g) OSO (g) ΔrH°(0 K) = -5.27 ± 0.25 kcal/molMisiewicz 2020, est unc
0.4609210.1 OSO (g) + 1/2 O2 (g) → OS(O)O (l) ΔrH°(298.15 K) = -144.21 ± 0.40 kJ/molNBS Tables 1989
0.3709168.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
0.3149270.1 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l) ΔrH°(298.15 K) = -115042 ± 60 kcal/molKapustinskii 1958
0.2999217.14 OSO (g) + 1/2 O2 (g) → OS(O)O (g) ΔrG°(925 K) = -11.77 ± 0.36 kJ/molKapustinskii 1936, Kapustinskii 1936a, Gurvich TPIS, 3rd Law
0.2149173.1 OSO (cr,l) → OSO (g) ΔrH°(298.15 K) = 23.7 ± 4.0 kJ/molNBS Tables 1989, NBS TN270
0.1869446.4 OS(OH)O (g) OS(O)O (g) → OHS(O)(O)O (g, staggered) OSO (g) ΔrH°(0 K) = -2.20 ± 0.85 kcal/molRuscic W1RO
0.1859238.2 OS(O)Cl2 (g) → OSO (g) Cl2 (g) ΔrG°(357 K) = -0.25 ± 0.30 (×1.354) kcal/molLondergan 1942, 3rd Law, est unc
0.1849493.4 (O2S)(OO) (g, triplet Cs ?) → OSO (g) O2 (g, triplet) ΔrH°(0 K) = 0.19 ± 1.50 kcal/molRuscic W1RO
0.1809177.7 S(OO) (g) → OSO (g) ΔrH°(0 K) = -110.38 ± 1.2 kcal/molRuscic W1RO
0.1669446.1 OS(OH)O (g) OS(O)O (g) → OHS(O)(O)O (g, staggered) OSO (g) ΔrH°(0 K) = -3.57 ± 0.90 kcal/molRuscic G3X
0.1569217.10 OSO (g) + 1/2 O2 (g) → OS(O)O (g) ΔrG°(985 K) = -6.44 ± 0.36 (×1.384) kJ/molBodenstein 1905, Gurvich TPIS, 3rd Law
0.1559217.12 OSO (g) + 1/2 O2 (g) → OS(O)O (g) ΔrG°(940 K) = -10.4 ± 0.5 kJ/molTaylor 1931, Gurvich TPIS, 3rd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.