Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Sulfurous acid

Formula: S(O)(OH)2 (aq, 1000 H2O)
CAS RN: 7782-99-2
ATcT ID: 7782-99-2*839
SMILES: O=S(O)O
InChI: InChI=1S/H2O3S/c1-4(2)3/h(H2,1,2,3)
InChIKey: LSNNMFCWUKXFEE-UHFFFAOYSA-N
Hills Formula: H2O3S1

2D Image:

O=S(O)O
Aliases: S(O)(OH)2; Sulfurous acid; OS(OH)2; (SO)(OH)2; SO(OH)2; O2S(OH)2; H2SO3
Relative Molecular Mass: 82.0801 ± 0.0061

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-614.89± 0.14kJ/mol

Top contributors to the provenance of ΔfH° of S(O)(OH)2 (aq, 1000 H2O)

The 10 contributors listed below account for 90.6% of the provenance of ΔfH° of S(O)(OH)2 (aq, 1000 H2O).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.59168.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
15.39298.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
11.49175.1 OSO (g) → OSO (aq, undissoc) ΔrG°(298.15 K) = -0.738 ± 0.05 kJ/molYoung 1983
11.29298.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/molMansson 1963, CODATA Key Vals
7.99418.1 S(O)(OH)2 (aq, undissoc) → S(O)(OH)2 (aq, 2500 H2O) ΔrH°(298.15 K) = -10.80 ± 0.040 kJ/molNBS Tables 1989, NBS TN270
4.59337.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/molMcCullough 1957a
3.59153.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.915) kcal/molDrowart 1968, Detry 1967, 3rd Law
3.19297.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.477) kcal/molMcCullough 1953, CODATA Key Vals
2.69153.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 (×1.044) kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
2.19298.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.278) kcal/molWaddington 1956, Mansson 1963, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of S(O)(OH)2 (aq, 1000 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Sulfurous acidS(O)(OH)2 (aq, 2500 H2O)O=S(O)O-617.30± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*898
99.9 Sulfurous acidS(O)(OH)2 (aq, 200 H2O)O=S(O)O-611.35± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*830
99.9 Sulfurous acidS(O)(OH)2 (aq, 750 H2O)O=S(O)O-614.20± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*836
99.9 Sulfurous acidS(O)(OH)2 (aq, 500 H2O)O=S(O)O-613.26± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*833
99.9 Sulfurous acidS(O)(OH)2 (aq, 400 H2O)O=S(O)O-612.76± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*832
99.9 Sulfurous acidS(O)(OH)2 (aq, 300 H2O)O=S(O)O-612.15± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*831
99.9 Sulfurous acidS(O)(OH)2 (aq, 250 H2O)O=S(O)O-611.78± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*908
99.9 Sulfurous acidS(O)(OH)2 (aq, 100 H2O)O=S(O)O-610.09± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*828
99.9 Sulfurous acidS(O)(OH)2 (aq, 150 H2O)O=S(O)O-610.81± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*829
99.9 Sulfurous acidS(O)(OH)2 (aq, 1500 H2O)O=S(O)O-615.98± 0.14kJ/mol82.0801 ±
0.0061
7782-99-2*840

Most Influential reactions involving S(O)(OH)2 (aq, 1000 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0009427.1 S(O)(OH)2 (aq, 1000 H2O) → S(O)(OH)2 (aq, 2500 H2O) ΔrH°(298.15 K) = -2.406 ± 0.004 kJ/molNBS Tables 1989, NBS TN270


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.