Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Pyridiniumyl

Formula: [N(CHCHCHCHCH)]+ (g)
CAS RN: 16399-94-3
ATcT ID: 16399-94-3*0
SMILES: c1cc[n+]cc1
InChI: InChI=1S/C5H5N/c1-2-4-6-5-3-1/h1-5H/q+1
InChIKey: PKMPLBDSSOMCNJ-UHFFFAOYSA-N
Hills Formula: C5H5N1+

2D Image:

c1cc[n+]cc1
Aliases: [N(CHCHCHCHCH)]+; Pyridiniumyl; Pyridine cation; Pyridine ion (1+); Azabenzene cation; Azabenzene ion (1+); Azine cation; Azine ion (1+); [C5NH5]+; C5NH5+; N(CHCHCHCHCH)+
Relative Molecular Mass: 79.0994 ± 0.0040

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1051.321035.38± 0.61kJ/mol

3D Image of [N(CHCHCHCHCH)]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [N(CHCHCHCHCH)]+ (g)

The 14 contributors listed below account for 90.3% of the provenance of ΔfH° of [N(CHCHCHCHCH)]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
49.87251.1 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.266 ± 0.005 eVEl-Sayed 1961, est unc
28.37261.1 N(CHCHCHCHCH) (cr,l) + 25/2 O2 (g) → 10 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1329.92 ± 0.20 kcal/molHubbard 1961
2.87262.1 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 9.656 ± 0.04 kcal/molAndon 1957, est unc
2.17261.2 N(CHCHCHCHCH) (cr,l) + 25/2 O2 (g) → 10 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1330.01 ± 0.72 kcal/molCox 1954
1.37251.2 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.26 ± 0.03 eVKing 1972a
0.97250.6 N(CHCHCHCHCH) (g) → 5 C (g) N (g) + 5 H (g) ΔrH°(0 K) = 1183.35 ± 0.60 kcal/molKarton 2009a
0.97251.8 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.23 ± 0.03 (×1.189) eVWatanabe 1957
0.77262.2 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 9.61 ± 0.08 kcal/molMcCullough 1957, ThermoData 2004
0.57251.14 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.219 ± 0.040 (×1.164) eVRuscic W1RO
0.47251.7 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.28 ± 0.05 eVAl-Joboury 1964, est unc
0.47251.4 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.26 ± 0.05 eVTurner 1970, est unc
0.47251.3 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.25 ± 0.05 eVEland 1978, Jonsson 1969, Turner 1967, est unc
0.47251.5 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.26 ± 0.05 eVUtsunomiya 1978, est unc
0.47251.6 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.31 ± 0.05 eVDewar 1969b, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [N(CHCHCHCHCH)]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
66.0 PyridineN(CHCHCHCHCH) (g)c1ccncc1157.34140.53± 0.40kJ/mol79.0999 ±
0.0040
110-86-1*0
61.6 PyridineN(CHCHCHCHCH) (cr,l)c1ccncc1102.23100.20± 0.38kJ/mol79.0999 ±
0.0040
110-86-1*500
20.6 Pyridinium[NH(CHCHCHCHCH)]+ (g)c1cc[nH+]cc1761.7740.8± 1.3kJ/mol80.1073 ±
0.0040
16969-45-2*0
12.2 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.670± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
10.9 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.477± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
10.8 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.090936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
10.6 BenzeneC6H6 (g)c1ccccc1100.7183.20± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
10.6 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.61976.14± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
10.6 BenzeneC6H6 (cr,l)c1ccccc150.8149.26± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
10.0 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.33-384.74± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500

Most Influential reactions involving [N(CHCHCHCHCH)]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8837251.1 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.266 ± 0.005 eVEl-Sayed 1961, est unc
0.0247251.2 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.26 ± 0.03 eVKing 1972a
0.0177251.8 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.23 ± 0.03 (×1.189) eVWatanabe 1957
0.0107251.14 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.219 ± 0.040 (×1.164) eVRuscic W1RO
0.0087251.6 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.31 ± 0.05 eVDewar 1969b, est unc
0.0087251.5 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.26 ± 0.05 eVUtsunomiya 1978, est unc
0.0087251.7 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.28 ± 0.05 eVAl-Joboury 1964, est unc
0.0087251.4 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.26 ± 0.05 eVTurner 1970, est unc
0.0087251.3 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.25 ± 0.05 eVEland 1978, Jonsson 1969, Turner 1967, est unc
0.0077251.9 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.32 ± 0.03 (×1.834) eVWatanabe 1962
0.0047251.11 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.241 ± 0.073 eVRuscic G4
0.0037251.13 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.282 ± 0.075 eVRuscic CBS-n
0.0027251.10 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.294 ± 0.093 eVRuscic G3X
0.0027251.12 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.290 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.