Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Ethyl bromide

Formula: CH3CH2Br (l)
CAS RN: 74-96-4
ATcT ID: 74-96-4*500
SMILES: CCBr
InChI: InChI=1S/C2H5Br/c1-2-3/h2H2,1H3
InChIKey: RDHPKYGYEGBMSE-UHFFFAOYSA-N
Hills Formula: C2H5Br1

2D Image:

CCBr
Aliases: CH3CH2Br; Ethyl bromide; Bromoethane; Monobromoethane; Bromic ether; Hydrobromic ether; F 160B1; NSC 8824
Relative Molecular Mass: 108.9651 ± 0.0019

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-55.38-90.91± 0.25kJ/mol

Top contributors to the provenance of ΔfH° of CH3CH2Br (l)

The 20 contributors listed below account only for 72.3% of the provenance of ΔfH° of CH3CH2Br (l).
A total of 192 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
41.36530.1 CH2CH2 (g) HBr (g) → CH3CH2Br (g) ΔrG°(546 K) = -8.340 ± 0.203 kJ/molLane 1953, 3rd Law
4.96532.9 CH3CH2Br (l) → CH3CH2Br (g) ΔrG°(298.236 K) = 1.263 ± 0.109 kJ/molThermoData 2004, 3rd Law
4.56531.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
3.29413.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 kcal/molJohnson 1963
2.71099.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
2.51200.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 cm-1Haugh 1971, Norling 1935
1.76531.2 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.133 ± 0.008 eVBorkar 2010
1.46532.5 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(311.9 K) = 27.29 ± 0.20 kJ/molSvoboda 1977, Majer 1985, est unc
1.46532.4 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(304.6 K) = 27.77 ± 0.20 kJ/molSvoboda 1977, Majer 1985, est unc
1.36532.7 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(305.99 K) = 6.632 ± 0.05 kcal/molde Kolossowsky 1934, ThermoData 2004, est unc
1.22512.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
1.12359.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.82471.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 eVRuscic 1989b
0.7125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.52471.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
0.52491.1 [CH3CH2]+ (g) H2O (g) → [H3O]+ (g) CH2CH2 (g) ΔrG°(298.15 K) = -1.8 ± 0.2 kcal/molBohme 1981, 3rd Law
0.48985.2 C6H4(C2H2(CC(C4H4))) (g) + 18 CH4 (g) → 9 CH3CH3 (g) + 7 CH2CH2 (g) ΔrH°(0 K) = 776.95 ± 6 kJ/molDorofeeva 2022, est unc
0.41200.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×3.018) cm-1Penno 1998, Norling 1935, est unc
0.47458.2 CH2BrCH2Br (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -0.41 ± 1.0 kcal/molRuscic G4
0.43747.1 CH2(CH2CH2CH2) (g) → 2 CH2CH2 (g) ΔrG°(750 K) = -13.37 ± 0.12 kcal/molQuick 1972, 3rd Law, note unc3

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2Br (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
94.8 Ethyl bromideCH3CH2Br (g)CCBr-40.98-62.92± 0.24kJ/mol108.9651 ±
0.0019
74-96-4*0
40.9 Hydrogen bromideHBr (g)Br-27.51-35.36± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*0
40.9 Bromoniumyl[HBr]+ (g)[BrH+]1098.161090.31± 0.12kJ/mol80.9114 ±
0.0010
12258-64-9*0
40.5 EthyleneCH2CH2 (g)C=C60.9152.40± 0.11kJ/mol28.0532 ±
0.0016
74-85-1*0
40.5 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.221068.01± 0.11kJ/mol28.0526 ±
0.0016
34470-02-5*0
37.6 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.24± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*952
37.5 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.26± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*842
37.5 Hydrogen bromideHBr (aq, 600 H2O)Br-120.01± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*834
37.5 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.31± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*844
37.5 Hydrogen bromideHBr (aq, 30 H2O)Br-118.59± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*820

Most Influential reactions involving CH3CH2Br (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5006532.9 CH3CH2Br (l) → CH3CH2Br (g) ΔrG°(298.236 K) = 1.263 ± 0.109 kJ/molThermoData 2004, 3rd Law
0.1486532.5 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(311.9 K) = 27.29 ± 0.20 kJ/molSvoboda 1977, Majer 1985, est unc
0.1486532.4 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(304.6 K) = 27.77 ± 0.20 kJ/molSvoboda 1977, Majer 1985, est unc
0.1356532.7 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(305.99 K) = 6.632 ± 0.05 kcal/molde Kolossowsky 1934, ThermoData 2004, est unc
0.0426532.6 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(322.7 K) = 26.54 ± 0.20 (×1.874) kJ/molSvoboda 1977, Majer 1985, est unc
0.0176532.3 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(298.15 K) = 27.88 ± 0.59 kJ/molThermoData 2004
0.0036532.1 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(298.15 K) = 6.6 ± 0.3 kcal/molCox 1970, as quoted by Pedley 1986
0.0026532.8 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(298.236 K) = 28.350 ± 1.718 kJ/molThermoData 2004, 2nd Law
0.0016533.1 CH3CH2Br (l) H2 (g) → 2 CH3CH3 (g) Br2 (cr,l) ΔrH°(298.15 K) = 5.6 ± 3.0 kcal/molAshcroft 1965, Cox 1970
0.0006532.2 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(298.15 K) = 28.26 ± 2.83 kJ/molMajer 1985


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.