Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Cyclopentene

Formula: CH2(CH2CHCHCH2) (l)
CAS RN: 142-29-0
ATcT ID: 142-29-0*590
SMILES: C1CC=CC1
InChI: InChI=1S/C5H8/c1-2-4-5-3-1/h1-2H,3-5H2
InChIKey: LPIQUOYDBNQMRZ-UHFFFAOYSA-N
Hills Formula: C5H8

2D Image:

C1CC=CC1
Aliases: CH2(CH2CHCHCH2); Cyclopentene; cyc-C5H8; UN 2246; NSC 5160
Relative Molecular Mass: 68.1170 ± 0.0040

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
7.34± 0.48kJ/mol

Top contributors to the provenance of ΔfH° of CH2(CH2CHCHCH2) (l)

The 20 contributors listed below account only for 77.0% of the provenance of ΔfH° of CH2(CH2CHCHCH2) (l).
A total of 70 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
17.53912.4 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.84 ± 0.14 kcal/molKaarsemaker 1952, as quoted by Cox 1970
13.53916.1 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(298.15 K) = 6.71 ± 0.07 kcal/molWagman 1949, Forziati 1950, Epstein 1949
13.53914.1 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.67 ± 0.06 kcal/molDolliver 1937
7.83912.1 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -3290.85 ± 0.72 (×1.215) kJ/molJohnson 1946
6.63916.2 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(300.15 K) = 6.78 ± 0.1 kcal/molLister 1941, est unc
3.83912.3 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.61 ± 0.30 kcal/molSpitzer 1947
2.63917.2 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.54 ± 0.14 (×4.757) kcal/molLabbauf 1961
2.03917.1 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.45 ± 0.17 (×4.458) kcal/molProsen 1944c, Labbauf 1961, Epstein 1949
1.53922.1 CH2(CHCHCHCH) (g) + 2 H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(355.15 K) = -50.907 ± 0.200 kcal/molKistiakowsky 1936
1.43918.1 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -26.7 ± 0.4 kcal/molRoth 1980a, note unc
1.1125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.72359.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.63914.2 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.94 ± 0.13 (×2.044) kcal/molAllinger 1982
0.63918.2 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -26.2 ± 0.6 kcal/molRogers 1971, est unc
0.66920.2 CH2(CH2CH2CH2CH2CH2CH2) (cr,l) + 21/2 O2 (g) → 7 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -1099.09 ± 0.14 kcal/molKaarsemaker 1952, as quoted by Cox 1970
0.56997.2 C6H4(CH2CH2CH2) (cr,l) + 23/2 O2 (g) → 9 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1190.80 ± 0.33 kcal/molGood 1971a
0.52214.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.56924.5 CH2(CHCHCH2CH2CH2CH2) (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.05 ± 0.85 kcal/molRuscic W1RO
0.43919.6 CH2(CHCHCHCH) (g) → 5 C (g) + 6 H (g) ΔrH°(0 K) = 1123.70 ± 0.50 kcal/molKarton 2017
0.46924.1 CH2(CHCHCH2CH2CH2CH2) (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.77 ± 0.90 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2(CH2CHCHCH2) (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
87.1 CyclopenteneCH2(CH2CHCHCH2) (g)C1CC=CC159.8835.62± 0.43kJ/mol68.1170 ±
0.0040
142-29-0*0
74.1 CyclopentaneCH2(CH2CH2CH2CH2) (g)C1CCCC1-43.42-75.99± 0.38kJ/mol70.1329 ±
0.0041
287-92-3*0
73.6 CyclopentaneCH2(CH2CH2CH2CH2) (l)C1CCCC1-104.68± 0.38kJ/mol70.1329 ±
0.0041
287-92-3*590
49.2 CyclopentadieneCH2(CHCHCHCH) (l)C1C=CC=C1110.34± 0.56kJ/mol66.1011 ±
0.0040
542-92-7*590
33.3 CyclopentadieneCH2(CHCHCHCH) (g)C1C=CC=C1151.77134.65± 0.53kJ/mol66.1011 ±
0.0040
542-92-7*0
22.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.670± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
20.0 IndaneC6H4(CH2CH2CH2) (g)c1ccc2c(c1)CCC290.9059.87± 0.76kJ/mol118.1757 ±
0.0072
496-11-7*0
19.8 WaterH2O (l)O-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
19.8 WaterH2O (l, eq.press.)O-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
19.8 WaterH2O (cr,l)O-286.274-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH2(CH2CHCHCH2) (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6433916.1 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(298.15 K) = 6.71 ± 0.07 kcal/molWagman 1949, Forziati 1950, Epstein 1949
0.3153916.2 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(300.15 K) = 6.78 ± 0.1 kcal/molLister 1941, est unc
0.0373918.1 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -26.7 ± 0.4 kcal/molRoth 1980a, note unc
0.0273917.2 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.54 ± 0.14 (×4.757) kcal/molLabbauf 1961
0.0213917.1 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.45 ± 0.17 (×4.458) kcal/molProsen 1944c, Labbauf 1961, Epstein 1949
0.0163918.2 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -26.2 ± 0.6 kcal/molRogers 1971, est unc
0.0053918.3 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -25.7 ± 0.5 (×2.181) kcal/molTurner 1968a, Turner 1968, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.