Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Benzylide

Formula: [C6H5CH2]- (g)
CAS RN: 18860-15-6
ATcT ID: 18860-15-6*0
SMILES: c1ccc(cc1)[CH2-]
InChI: InChI=1S/C7H7/c1-7-5-3-2-4-6-7/h2-6H,1H2/q-1
InChIKey: QJHNLKRMBCYQKX-UHFFFAOYSA-N
Hills Formula: C7H7-

2D Image:

c1ccc(cc1)[CH2-]
Aliases: [C6H5CH2]-; Benzylide; Benzylide ion; Benzylide anion; Benzylide ion (1-); Benzyl anion; Benzyl ion (1-); Phenylmethanide; Phenylmethyl anion; Phenylmethyl ion (1-); C6H5CH2-
Relative Molecular Mass: 91.1310 ± 0.0056

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
142.05123.13± 0.40kJ/mol

3D Image of [C6H5CH2]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H5CH2]- (g)

The 20 contributors listed below account only for 54.5% of the provenance of ΔfH° of [C6H5CH2]- (g).
A total of 376 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.06748.1 C6H5CH3 (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -934.49 ± 0.12 kcal/molProsen 1945a, as quoted by Cox 1970
14.06748.4 C6H5CH3 (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -934.45 ± 0.12 kcal/molGood 1969
3.92898.9 CH3OH (g) → CH3O (g) H (g) ΔrH°(0 K) = 104.06 ± 0.17 kcal/molNguyen 2015a
3.26760.2 [C6H5CH2]- (g) CH3OH (g) → C6H5CH3 (g) [CH3O]- (g) ΔrG°(300 K) = 0.16 ± 0.02 kcal/molEllison 1996
2.32927.10 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.47 ± 0.17 kcal/molNguyen 2015a
2.36752.1 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.912 ± 0.006 eVGunion 1992
2.06748.2 C6H5CH3 (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -934.72 ± 0.11 (×2.828) kcal/molCoops 1946, as quoted by Cox 1970
1.82145.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.68793.1 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrG°(1200 K) = 82.5 ± 4 kJ/molHippler 1990, Muller-Markgraf 1988, 3rd Law, est unc
1.32903.1 CH3OH (g) F- (g) → [CH3O]- (g) HF (g) ΔrH°(0 K) = 0.462 ± 0.003 (×4.362) eVDeTuri 1999, Ervin 2002
1.02905.1 CH3O (g) → CH3 (g) O (g) ΔrH°(0 K) = 87.8 ± 0.3 kcal/molOsborn 1995, Osborn 1997
1.0125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.92290.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.72894.2 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 12654 ± 6 cm-1Weichman 2017
0.72145.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.72145.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.58793.3 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrH°(0 K) = 67.13 ± 1.60 kcal/molRuscic G4
0.52870.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.044) kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
0.56968.1 CH3C6H4C(O)H (cr, l, ortho) + 19/2 O2 (g) → 8 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -4170.4 ± 2.1 kJ/molBilodeau 1999
0.56747.1 C6H5CH3 (l) → C6H5CH3 (g) ΔrH°(298.15 K) = 38.06 ± 0.08 kJ/molMajer 1985

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5CH2]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
75.6 TolueneC6H5CH3 (g)c1ccc(cc1)C73.3650.07± 0.31kJ/mol92.1384 ±
0.0056
108-88-3*0
74.1 TolueneC6H5CH3 (l)c1ccc(cc1)C19.7912.04± 0.31kJ/mol92.1384 ±
0.0056
108-88-3*500
56.8 BenzylC6H5CH2 (g)c1ccc(cc1)[CH2]230.30211.48± 0.55kJ/mol91.1305 ±
0.0056
2154-56-5*0
56.6 Benzylium[C6H5CH2]+ (g)c1ccc(cc1)[CH2+]929.72910.22± 0.55kJ/mol91.1299 ±
0.0056
6711-19-9*0
54.7 Methoxide[CH3O]- (g)C[O-]-122.32-130.05± 0.26kJ/mol31.03447 ±
0.00088
3315-60-4*0
52.8 MethoxyCH3O (g)C[O]29.0721.69± 0.26kJ/mol31.03392 ±
0.00088
2143-68-2*0
26.6 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.670± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
23.0 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.477± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
22.7 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.090936.925± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
22.1 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.33-384.74± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500

Most Influential reactions involving [C6H5CH2]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9896760.2 [C6H5CH2]- (g) CH3OH (g) → C6H5CH3 (g) [CH3O]- (g) ΔrG°(300 K) = 0.16 ± 0.02 kcal/molEllison 1996
0.6156752.1 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.912 ± 0.006 eVGunion 1992
0.1496807.5 [CH(CHCHCHCHCHCH)]- (g) → [C6H5CH2]- (g) ΔrH°(0 K) = -29.02 ± 1.2 kcal/molRuscic W1RO
0.1276807.2 [CH(CHCHCHCHCHCH)]- (g) → [C6H5CH2]- (g) ΔrH°(0 K) = -28.97 ± 1.3 kcal/molRuscic G4
0.1096807.1 [CH(CHCHCHCHCHCH)]- (g) → [C6H5CH2]- (g) ΔrH°(0 K) = -28.97 ± 1.4 kcal/molRuscic G3X
0.0846807.3 [CH(CHCHCHCHCHCH)]- (g) → [C6H5CH2]- (g) ΔrH°(0 K) = -29.24 ± 1.6 kcal/molRuscic CBS-n
0.0616764.5 [C6H5CH2]- (g) CH3CH3 (g) → C6H5CH3 (g) [CH3CH2]- (g) ΔrH°(0 K) = 37.14 ± 0.85 kcal/molRuscic W1RO
0.0546764.2 [C6H5CH2]- (g) CH3CH3 (g) → C6H5CH3 (g) [CH3CH2]- (g) ΔrH°(0 K) = 37.76 ± 0.90 kcal/molRuscic G4
0.0546764.4 [C6H5CH2]- (g) CH3CH3 (g) → C6H5CH3 (g) [CH3CH2]- (g) ΔrH°(0 K) = 37.81 ± 0.90 kcal/molRuscic CBS-n
0.0446764.3 [C6H5CH2]- (g) CH3CH3 (g) → C6H5CH3 (g) [CH3CH2]- (g) ΔrH°(0 K) = 36.73 ± 1.0 kcal/molRuscic CBS-n
0.0406764.1 [C6H5CH2]- (g) CH3CH3 (g) → C6H5CH3 (g) [CH3CH2]- (g) ΔrH°(0 K) = 38.11 ± 0.90 (×1.164) kcal/molRuscic G3X
0.0086752.10 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.926 ± 0.050 eVRuscic W1RO
0.0076752.3 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 6964 ± 450 cm-1Drzaic 1984, note unc3
0.0066752.7 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.951 ± 0.061 eVRuscic G4
0.0046759.5 C6H5CH3 (g) → [C6H5CH2]- (g) H+ (g) ΔrH°(0 K) = 381.60 ± 0.90 kcal/molRuscic W1RO
0.0036761.1 [C6H5CH2]- (g) CH3CH2OH (g) → C6H5CH3 (g) [CH3CH2O]- (g) ΔrG°(338 K) = -5.6 ± 2 (×3.748) kJ/molGal 2001, est unc
0.0036752.6 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.982 ± 0.085 eVRuscic G3X
0.0026761.2 [C6H5CH2]- (g) CH3CH2OH (g) → C6H5CH3 (g) [CH3CH2O]- (g) ΔrG°(298.15 K) = -2.7 ± 2.0 kcal/molBartmess 1979
0.0026752.9 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.960 ± 0.090 eVRuscic CBS-n
0.0026752.8 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.899 ± 0.092 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.